
000 | 00651pamuu2200217 a 4500 | |
001 | 000045186318 | |
005 | 20071217133437 | |
008 | 840813s1984 nyu b 001 0 eng d | |
020 | ▼a 0387960740 (pbk.) | |
040 | ▼d 244002 ▼d 211009 | |
082 | 0 4 | ▼a 512/.2 ▼2 22 |
090 | ▼a 512.2 ▼b C979m2 | |
100 | 1 | ▼a Curtis, Morton Landers , ▼d 1921-. |
245 | 1 0 | ▼a Matrix groups / ▼c Morton L. Curtis. |
250 | ▼a 2nd ed. | |
260 | ▼a New York : ▼b Springer-Verlag , ▼c c1984. | |
300 | ▼a x, 209 p. ; ▼c 24 cm. | |
490 | 0 | ▼a Universitext |
504 | ▼a Includes bibliographical references (p. [203]) and index. | |
650 | 0 | ▼a Matrix groups. |
소장정보
No. | 소장처 | 청구기호 | 등록번호 | 도서상태 | 반납예정일 | 예약 | 서비스 |
---|---|---|---|---|---|---|---|
No. 1 | 소장처 세종학술정보원/과학기술실/ | 청구기호 512.2 C979m2 | 등록번호 151181570 | 도서상태 대출가능 | 반납예정일 | 예약 | 서비스 |
컨텐츠정보
목차
1 General Linear Groups.- A. Groups.- B. Fields, Quaternions.- C. Vectors and Matrices.- D. General Linear Groups.- E. Exercises.- 2 Orthogonal Groups.- A. Inner Products.- B. Orthogonal Groups.- C. The Isomorphism Question.- D. Reflections in ?n.- E. Exercises.- 3 Homomorphisms.- A. Curves in a Vector Space.- B. Smooth Homomorphisms.- C. Exercises.- 4 Exponential and Logarithm.- A. Exponential of a Matrix.- B. Logarithm.- C. One-parameter Subgroups.- D. Lie Algebras.- E. Exercises.- 5 SO(3) and Sp(1).- A. The Homomorphism ?: S3?SO(3).- B. Centers.- C. Quotient Groups.- D. Exercises.- 6 Topology.- A. Introduction.- B. Continuity of Functions, Open Sets, Closed Sets.- C. Connected Sets, Compact Sets.- D. Subspace Topology, Countable Bases.- E. Manifolds.- F. Exercises.- 7 Maximal Tori.- A. Cartesian Products of Groups.- B. Maximal Tori in Groups.- C. Centers Again.- D. Exercises.- 8 Covering by Maximal Tori.- A. General Remarks.- B. (+) for U(n) and SU(n).- C. (+) for SO(n).- D. (+) for Sp(n).- E. Reflections in ?n (again).- F. Exercises.- 9 Conjugacy of Maximal Tori.- A. Monogenic Groups.- B. Conjugacy of Maximal Tori.- C. The Isomorphism Question Again.- D. Simple Groups, Simply-Connected Groups.- E. Exercises.- 10 Spin(k).- A. Clifford Algebras.- B. Pin(k) and Spin(k).- C. The Isomorphisms.- D. Exercises.- 11 Normalizers, Weyl Groups.- A. Normalizers.- B. Weyl Groups.- C. Spin(2n+1) and Sp(n).- D. SO(n) Splits.- E. Exercises.- 12 Lie Groups.- A. Differentiable Manifolds.- B. Tangent Vectors, Vector Fields.- C. Lie Groups.- D. Connected Groups.- E. Abelian Groups.- 13.- A. Maximal Tori.- B. The Anatomy of a Reflection.- C. The Adjoint Representation.- D. Sample Computation of Roots.- Appendix 1.- Appendix 2.- References.- Supplementary Index (for Chapter 13).
정보제공 :
