HOME > Detail View

Detail View

Lie groups

Lie groups (Loan 16 times)

Material type
단행본
Personal Author
Duistermaat, J. J. (Johannes Jisse) , 1942-. Kolk, Johan A. C 1947-
Title Statement
Lie groups / Johannes J. Duistermaat, Johan A.C. Kolk.
Publication, Distribution, etc
Berlin ;   New York :   Springer ,   c2000.  
Physical Medium
viii, 344 p. : ill. ; 24 cm.
Series Statement
Universitext
ISBN
3540152938 (softcover)
Bibliography, Etc. Note
Includes bibliographical references and index.
Subject Added Entry-Topical Term
Lie groups. Lie, Groupes de.
000 01011pamuu22003134a 4500
001 000045183301
005 20050802141937
008 050802s2000 gw a b 001 0 eng
010 ▼a 99050197
020 ▼a 3540152938 (softcover)
040 ▼a DLC ▼c DLC ▼d OHX ▼d C#P ▼d FPU ▼d 211009
042 ▼a pcc
049 ▼a OCLC
050 0 0 ▼a QA387 ▼b .D85 2000
072 7 ▼a QA ▼2 lcco
082 0 0 ▼a 512/.55 ▼2 21
090 ▼a 512.55 ▼b D875L
100 1 ▼a Duistermaat, J. J. ▼q (Johannes Jisse) , ▼d 1942-.
245 1 0 ▼a Lie groups / ▼c Johannes J. Duistermaat, Johan A.C. Kolk.
260 ▼a Berlin ; ▼a New York : ▼b Springer , ▼c c2000.
300 ▼a viii, 344 p. : ▼b ill. ; ▼c 24 cm.
490 0 ▼a Universitext
504 ▼a Includes bibliographical references and index.
650 0 ▼a Lie groups.
650 7 ▼a Lie, Groupes de. ▼2 ram
700 1 ▼a Kolk, Johan A. C ▼d 1947-
938 ▼a Otto Harrassowitz ▼b HARR ▼n har000746884 ▼c 79.00 DEM
945 ▼a KINS

Holdings Information

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Science & Engineering Library/Sci-Info(Stacks2)/ Call Number 512.55 D875L Accession No. 121108193 Availability Available Due Date Make a Reservation Service B M

Contents information

Table of Contents

Preface 1 Lie Groups and Lie Algebras 1.1 Lie Groups and their Lie Algebras 1.2 Examples 1.3 The Exponential Map 1.4 The Exponential Map for a Vector Space 1.5 The Tangent Map of Exp 1.6 The Product in Logarithmic Coordinates 1.7 Dynkin's Formula 1.8 Lie's Fundamental Theorems 1.9 The Component of the Identity 1.10 Lie Subgroups and Homomorphisms 1.11 Quotients 1.12 Connected Commutative Lie Groups 1.13 Simply Connected Lie Groups 1.14 Lie's Third Fundamental Theorem in Global Form 1.15 Exercises 1.16 Notes References for Chapter One 2 Proper Actions 2.1 Review 2.2 Bochner's Linearization Theorem 2.3 Slices 2.4 Associated Fiber Bundles 2.5 Smooth Functions on the Orbit Space 2.6 Orbit Types and Local Action Types 2.7 The Stratification by Orbit Types 2.8 Principal and Regular Orbits 2.9 Blowing Up 2.10 Exercises 2.11 Notes References for Chapter Two 3 Compact Lie Groups 3.0 Introduction 3.1 Centralizers 3.2 The Adjoint Action 3.3 Connectedness of Centralizers 3.4 The Group of Rotations and its Covering Group 3.5 Roots and Root Spaces 3.6 Compact Lie Algebras 3.7 Maximal Tori 3.8 Orbit Structure in the Lie Algebra 3.9 The Fundamental Group 3.10 The Weyl Group as a Reflection Group 3.11 The Stiefel Diagram 3.12 Unitary Groups 3.13 Integration 3.14 The Weyl Integration Theorem 3.15 Nonconnected Groups 3.16 Exercises 3.17 Notes References for Chapter Three 4 Representations of Compact Groups 4.0 Introduction 4.1 Schur's Lemma 4.2 Averaging 4.3 Matrix Coefficients and Characters 4.4 G-types 4.5 Finite Groups 4.6 The Peter-Weyl Theorem 4.7 Induced Representations 4.8 Reality 4.9 Weyl's Character Formula 4.10 Weight Exercises 4.11 Highest Weight Vectors 4.12 The Borel-Weil Theorem 4.13 The Nonconnected Case 4.14 Exercises 4.15 Notes References for Chapter Four Appendix A Appendix B Appendix


Information Provided By: : Aladin

New Arrivals Books in Related Fields