
000 | 00967camuu2200277 a 4500 | |
001 | 000045139423 | |
005 | 20041216170255 | |
008 | 041216s2002 gw b 001 0 eng | |
020 | ▼a 3540421920 (acid-free paper) | |
040 | ▼a DLC ▼c DLC ▼d DLC ▼d 244002 | |
041 | 1 | ▼a eng ▼h fre |
050 | 0 0 | ▼a QA247 ▼b .S45813 2002 |
082 | 0 0 | ▼a 512/.74 ▼2 21 |
090 | ▼a 512.74 ▼b S488g2 | |
100 | 1 | ▼a Serre, Jean Pierre. |
240 | 1 0 | ▼a Cohomologie galoisienne. ▼l English |
245 | 1 0 | ▼a Galois cohomology / ▼c Jean-Pierre Serre ; translated from the French by Patrick Ion. |
250 | ▼a Corr. 2nd print. | |
260 | ▼a Berlin ; ▼a New York : ▼b Springer , ▼c 2002. | |
300 | ▼a x, 210 p. ; ▼c 25 cm. | |
440 | 0 | ▼a Springer monographs in mathematics , ▼x 1439-7382 |
504 | ▼a Includes bibliographical references (p. [199]-207) and index. | |
650 | 0 | ▼a Algebraic number theory. |
650 | 0 | ▼a Galois theory. |
650 | 0 | ▼a Algebra, Homological. |
Holdings Information
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Sejong Academic Information Center/Course Reserves/ | Call Number 512.74 S488g2 | Accession No. 151167858 | Availability In loan | Due Date 2030-12-31 | Make a Reservation | Service |
Contents information
Table of Contents
I. Cohomology of profinite groups.- 1. Profinite groups.- 1.1 Definition.- 1.2 Subgroups.- 1.3 Indices.- 1.4 Pro-p-groups and Sylow p-subgroups.- 1.5 Pro-p-groups.- 2. Cohomology.- 2.1 Discrete G-modules.- 2.2 Cochains, cocycles, cohomology.- 2.3 Low dimensions.- 2.4 Fimctoriality.- 2.5 Induced modules.- 2.6 Complements.- 3. Cohomological dimension.- 3.1 p-cohomological dimension.- 3.2 Strict cohomological dimension.- 3.3 Cohomological dimension of subgroups and extensions.- 3.4 Characterization of the profinite groups G such that cdp(G) ? 1.- 3.5 Dualizing modules.- 4. Cohomology of pro-p-groups.- 4.1 Simple modules.- 4.2 Interpretation of H1: generators.- 4.3 Interpretation of H2: relations.- 4.4 A theorem of Shafarevich.- 4.5 Poincare groups.- 5. Nonabelian cohomology.- 5.1 Definition of H0 and of H1.- 5.2 Principal homogeneous spaces over A - a new definition of H1(G,A).- 5.3 Twisting.- 5.4 The cohomology exact sequence associated to a subgroup.- 5.5 Cohomology exact sequence associated to a normal subgroup.- 5.6 The case of an abelian normal subgroup.- 5.7 The case of a central subgroup.- 5.8 Complements.- 5.9 A property of groups with cohomological dimension ? 1.- II. Galois cohomology, the commutative case.- 1. Generalities.- 1.1 Galois cohomology.- 1.2 First examples.- 2. Criteria for cohomological dimension.- 2.1 An auxiliary result.- 2.2 Case when p is equal to the characteristic.- 2.3 Case when p differs from the characteristic.- 3. Fields of dimension ?1.- 3.1 Definition.- 3.2 Relation with the property (C1).- 3.3 Examples of fields of dimension ? 1.- 4. Transition theorems.- 4.1 Algebraic extensions.- 4.2 Transcendental extensions.- 4.3 Local fields.- 4.4 Cohomological dimension of the Galois group of an algebraic number field.- 4.5 Property (Cr).- 5. p-adic fields.- 5.1 Summary of known results.- 5.2 Cohomology of finite Gk-modules.- 5.3 First applications.- 5.4 The Euler-Poincare characteristic (elementary case).- 5.5 Unramified cohomology.- 5.6 The Galois group of the maximal p-extension of k.- 5.7 Euler-Poincare characteristics.- 5.8 Groups of multiplicative type.- 6. Algebraic number fields.- 6.1 Finite modules - definition of the groups Pi(k, A).- 6.2 The finiteness theorem.- 6.3 Statements of the theorems of Poitou and Tate.- III. Nonabelian Galois cohomology.- 1. Forms.- 1.1 Tensors.- 1.2 Examples.- 1.3 Varieties, algebraic groups, etc.- 1.4 Example: the k-forms of the group SLn.- 2. Fields of dimension ? 1.- 2.1 Linear groups: summary of known results.- 2.2 Vanishing of H1 for connected linear groups.- 2.3 Steinberg's theorem.- 2.4 Rational points on homogeneous spaces.- 3. Fields of dimension ? 2.- 3.1 Conjecture II.- 3.2 Examples.- 4. Finiteness theorems.- 4.1 Condition (F).- 4.2 Fields of type (F).- 4.3 Finiteness of the cohomology of linear groups.- 4.4 Finiteness of orbits.- 4.5 The case k = R.- 4.6 Algebraic number fields (Borel's theorem).- 4.7 A counter-example to the "Hasse principle".
Information Provided By: :
