HOME > 상세정보

상세정보

Galois cohomology Corr. 2nd print

Galois cohomology Corr. 2nd print (1회 대출)

자료유형
단행본
개인저자
Serre, Jean Pierre.
서명 / 저자사항
Galois cohomology / Jean-Pierre Serre ; translated from the French by Patrick Ion.
판사항
Corr. 2nd print.
발행사항
Berlin ;   New York :   Springer ,   2002.  
형태사항
x, 210 p. ; 25 cm.
총서사항
Springer monographs in mathematics , 1439-7382
ISBN
3540421920 (acid-free paper)
서지주기
Includes bibliographical references (p. [199]-207) and index.
일반주제명
Algebraic number theory. Galois theory. Algebra, Homological.
000 00967camuu2200277 a 4500
001 000045139423
005 20041216170255
008 041216s2002 gw b 001 0 eng
020 ▼a 3540421920 (acid-free paper)
040 ▼a DLC ▼c DLC ▼d DLC ▼d 244002
041 1 ▼a eng ▼h fre
050 0 0 ▼a QA247 ▼b .S45813 2002
082 0 0 ▼a 512/.74 ▼2 21
090 ▼a 512.74 ▼b S488g2
100 1 ▼a Serre, Jean Pierre.
240 1 0 ▼a Cohomologie galoisienne. ▼l English
245 1 0 ▼a Galois cohomology / ▼c Jean-Pierre Serre ; translated from the French by Patrick Ion.
250 ▼a Corr. 2nd print.
260 ▼a Berlin ; ▼a New York : ▼b Springer , ▼c 2002.
300 ▼a x, 210 p. ; ▼c 25 cm.
440 0 ▼a Springer monographs in mathematics , ▼x 1439-7382
504 ▼a Includes bibliographical references (p. [199]-207) and index.
650 0 ▼a Algebraic number theory.
650 0 ▼a Galois theory.
650 0 ▼a Algebra, Homological.

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 세종학술정보원/학과비치/ 청구기호 512.74 S488g2 등록번호 151167858 도서상태 대출중 반납예정일 2030-12-31 예약 서비스 M

컨텐츠정보

목차

I. Cohomology of profinite groups.- 1. Profinite groups.- 1.1 Definition.- 1.2 Subgroups.- 1.3 Indices.- 1.4 Pro-p-groups and Sylow p-subgroups.- 1.5 Pro-p-groups.- 2. Cohomology.- 2.1 Discrete G-modules.- 2.2 Cochains, cocycles, cohomology.- 2.3 Low dimensions.- 2.4 Fimctoriality.- 2.5 Induced modules.- 2.6 Complements.- 3. Cohomological dimension.- 3.1 p-cohomological dimension.- 3.2 Strict cohomological dimension.- 3.3 Cohomological dimension of subgroups and extensions.- 3.4 Characterization of the profinite groups G such that cdp(G) ? 1.- 3.5 Dualizing modules.- 4. Cohomology of pro-p-groups.- 4.1 Simple modules.- 4.2 Interpretation of H1: generators.- 4.3 Interpretation of H2: relations.- 4.4 A theorem of Shafarevich.- 4.5 Poincare groups.- 5. Nonabelian cohomology.- 5.1 Definition of H0 and of H1.- 5.2 Principal homogeneous spaces over A - a new definition of H1(G,A).- 5.3 Twisting.- 5.4 The cohomology exact sequence associated to a subgroup.- 5.5 Cohomology exact sequence associated to a normal subgroup.- 5.6 The case of an abelian normal subgroup.- 5.7 The case of a central subgroup.- 5.8 Complements.- 5.9 A property of groups with cohomological dimension ? 1.- II. Galois cohomology, the commutative case.- 1. Generalities.- 1.1 Galois cohomology.- 1.2 First examples.- 2. Criteria for cohomological dimension.- 2.1 An auxiliary result.- 2.2 Case when p is equal to the characteristic.- 2.3 Case when p differs from the characteristic.- 3. Fields of dimension ?1.- 3.1 Definition.- 3.2 Relation with the property (C1).- 3.3 Examples of fields of dimension ? 1.- 4. Transition theorems.- 4.1 Algebraic extensions.- 4.2 Transcendental extensions.- 4.3 Local fields.- 4.4 Cohomological dimension of the Galois group of an algebraic number field.- 4.5 Property (Cr).- 5. p-adic fields.- 5.1 Summary of known results.- 5.2 Cohomology of finite Gk-modules.- 5.3 First applications.- 5.4 The Euler-Poincare characteristic (elementary case).- 5.5 Unramified cohomology.- 5.6 The Galois group of the maximal p-extension of k.- 5.7 Euler-Poincare characteristics.- 5.8 Groups of multiplicative type.- 6. Algebraic number fields.- 6.1 Finite modules - definition of the groups Pi(k, A).- 6.2 The finiteness theorem.- 6.3 Statements of the theorems of Poitou and Tate.- III. Nonabelian Galois cohomology.- 1. Forms.- 1.1 Tensors.- 1.2 Examples.- 1.3 Varieties, algebraic groups, etc.- 1.4 Example: the k-forms of the group SLn.- 2. Fields of dimension ? 1.- 2.1 Linear groups: summary of known results.- 2.2 Vanishing of H1 for connected linear groups.- 2.3 Steinberg's theorem.- 2.4 Rational points on homogeneous spaces.- 3. Fields of dimension ? 2.- 3.1 Conjecture II.- 3.2 Examples.- 4. Finiteness theorems.- 4.1 Condition (F).- 4.2 Fields of type (F).- 4.3 Finiteness of the cohomology of linear groups.- 4.4 Finiteness of orbits.- 4.5 The case k = R.- 4.6 Algebraic number fields (Borel's theorem).- 4.7 A counter-example to the "Hasse principle".


정보제공 : Aladin

관련분야 신착자료