
000 | 00915camuu2200277 a 4500 | |
001 | 000001073001 | |
005 | 20020517112709 | |
008 | 010627s2002 nyu b 001 0 eng d | |
010 | ▼a 2001042962 | |
020 | ▼a 0387953353 (alk. paper) | |
040 | ▼a DLC ▼c DLC ▼d DLC ▼d 244002 | |
042 | ▼a pcc | |
049 | 0 | ▼l 151125240 |
050 | 0 0 | ▼a QA241 ▼b .R675 2002 |
082 | 0 0 | ▼a 512/.7 ▼2 21 |
090 | ▼a 512.7 ▼b R813n | |
100 | 1 | ▼a Rosen, Michael I. ▼q (Michael Ira), ▼d 1938-. |
245 | 1 0 | ▼a Number theory in function fields / ▼c Michael Rosen. |
260 | ▼a New York : ▼b Springer, ▼c c2002. | |
300 | ▼a xii, 358 p. ; ▼c 25 cm. | |
440 | 0 | ▼a Graduate texts in mathematics ; ▼v 210 |
504 | ▼a Includes bibliographical references (p. [341]-351) and index. | |
650 | 0 | ▼a Number theory. |
650 | 0 | ▼a Finite fields (Algebra) |
Holdings Information
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Sejong Academic Information Center/Science & Technology/ | Call Number 512.7 R813n | Accession No. 151125240 | Availability Available | Due Date | Make a Reservation | Service |
Contents information
Table of Contents
Polynomials over Finite Fields.- Primes, Arithmetic Functions, and the Zeta Function.- The Reciprocity Law.- Dirichlet L-series and Primes in an Arithmetic Progression.- Algebraic Function Fields and Global Function Fields.- Weil Differentials and the Canonical Class.- Extensions of Function Fields, Riemann-Hurwitz, and the ABC Theorem.- Constant Field Extensions.- Galois Extensions - Artin and Hecke L- functions.- Artin's Primitive Root Conjecture.- The Behavior of the Class Group in Constant Field Extensions.- Cyclotomic Function Fields.- Drinfeld Modules, An Introduction.- S-Units, S-Class Group, and the Corresponding L-functions.- The Brumer-Stark Conjecture.- Class Number Formulas in Quadratic and Cyclotomic Function Fields.- Average Value Theorems in Function Fields.
Information Provided By: :
