HOME > Detail View

Detail View

Basic homological algebra

Basic homological algebra (Loan 3 times)

Material type
단행본
Personal Author
Osborne, M. Scott.
Title Statement
Basic homological algebra / M. Scott Osborne.
Publication, Distribution, etc
New York :   Springer,   2000.  
Physical Medium
x 395 p. : ill. ; 25 cm.
Series Statement
Graduate texts in mathematics ; 196
ISBN
038798934X (hc. : alk. paper)
Bibliography, Etc. Note
Includes bibliographical references (p. [383]-387) and index.
Subject Added Entry-Topical Term
Algebra, Homological.
000 00766camuu2200241 a 4500
001 000001057128
005 20010228165646
008 990825s2000 nyua b 001 0 eng
010 ▼a 99046582
020 ▼a 038798934X (hc. : alk. paper)
040 ▼a DLC ▼c DLC ▼d DLC ▼d 244002
042 ▼a pcc
049 0 ▼l 151095951
050 0 0 ▼a QA169 ▼b .O83 2000
082 0 0 ▼a 512/.55 ▼2 21
090 ▼a 512.55 ▼b O81b
100 1 ▼a Osborne, M. Scott.
245 1 0 ▼a Basic homological algebra / ▼c M. Scott Osborne.
260 ▼a New York : ▼b Springer, ▼c 2000.
300 ▼a x 395 p. : ▼b ill. ; ▼c 25 cm.
440 0 ▼a Graduate texts in mathematics ; ▼v 196
504 ▼a Includes bibliographical references (p. [383]-387) and index.
650 0 ▼a Algebra, Homological.

Holdings Information

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Sejong Academic Information Center/Science & Technology/ Call Number 512.55 O81b Accession No. 151095951 Availability Available Due Date Make a Reservation Service B M

Contents information

Table of Contents

1 Categories.- 2 Modules.- 2.1 Generalities.- 2.2 Tensor Products.- 2.3 Exactness of Functors.- 2.4 Projectives, Injectives, and Flats.- 3 Ext and Tor.- 3.1 Complexes and Projective Resolutions.- 3.2 Long Exact Sequences.- 3.3 Flat Resolutions and Injective Resolutions.- 3.4 Consequences.- 4 Dimension Theory.- 4.1 Dimension Shifting.- 4.2 When Flats are Projective.- 4.3 Dimension Zero.- 4.4 An Example.- 5 Change of Rings.- 5.1 Computational Considerations.- 5.2 Matrix Rings.- 5.3 Polynomials.- 5.4 Quotients and Localization.- 6 Derived Functors.- 6.1 Additive Functors.- 6.2 Derived Functors.- 6.3 Long Exact Sequences-I. Existence.- 6.4 Long Exact Sequences-II. Naturality.- 6.5 Long Exact Sequences-III. Weirdness.- 6.6 Universality of Ext.- 7 Abstract Homologieal Algebra.- 7.1 Living Without Elements.- 7.2 Additive Categories.- 7.3 Kernels and Cokernels.- 7.4 Cheating with Projectives.- 7.5 (Interlude) Arrow Categories.- 7.6 Homology in Abelian Categories.- 7.7 Long Exact Sequences.- 7.8 An Alternative for Unbalanced Categories.- 8 Colimits and Tor.- 8.1 Limits and Colimits.- 8.2 Adjoint Functors.- 8.3 Directed Colimits, ?, and Tor.- 8.4 Lazard's Theorem.- 8.5 Weak Dimension Revisited.- 9 Odds and Ends.- 9.1 Injective Envelopes.- 9.2 Universal Coefficients.- 9.3 The Kunneth Theorems.- 9.4 Do Connecting Homomorphisms Commute?.- 9.5 The Ext Product.- 9.6 The Jacobson Radical, Nakayama's Lemma, and Quasilocal Rings.- 9.7 Local Rings and Localization Revisited (Expository).- A GCDs, LCMs, PIDs, and UFDs.- B The Ring of Entire Functions.- C The Mitchell-Freyd Theorem and Cheating in Abelian Categories.- D Noether Correspondences in Abelian Categories.- Solution Outlines.- References.- Symbol Index.


Information Provided By: : Aladin

New Arrivals Books in Related Fields