
000 | 00766camuu2200241 a 4500 | |
001 | 000001057128 | |
005 | 20010228165646 | |
008 | 990825s2000 nyua b 001 0 eng | |
010 | ▼a 99046582 | |
020 | ▼a 038798934X (hc. : alk. paper) | |
040 | ▼a DLC ▼c DLC ▼d DLC ▼d 244002 | |
042 | ▼a pcc | |
049 | 0 | ▼l 151095951 |
050 | 0 0 | ▼a QA169 ▼b .O83 2000 |
082 | 0 0 | ▼a 512/.55 ▼2 21 |
090 | ▼a 512.55 ▼b O81b | |
100 | 1 | ▼a Osborne, M. Scott. |
245 | 1 0 | ▼a Basic homological algebra / ▼c M. Scott Osborne. |
260 | ▼a New York : ▼b Springer, ▼c 2000. | |
300 | ▼a x 395 p. : ▼b ill. ; ▼c 25 cm. | |
440 | 0 | ▼a Graduate texts in mathematics ; ▼v 196 |
504 | ▼a Includes bibliographical references (p. [383]-387) and index. | |
650 | 0 | ▼a Algebra, Homological. |
Holdings Information
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Sejong Academic Information Center/Science & Technology/ | Call Number 512.55 O81b | Accession No. 151095951 | Availability Available | Due Date | Make a Reservation | Service |
Contents information
Table of Contents
1 Categories.- 2 Modules.- 2.1 Generalities.- 2.2 Tensor Products.- 2.3 Exactness of Functors.- 2.4 Projectives, Injectives, and Flats.- 3 Ext and Tor.- 3.1 Complexes and Projective Resolutions.- 3.2 Long Exact Sequences.- 3.3 Flat Resolutions and Injective Resolutions.- 3.4 Consequences.- 4 Dimension Theory.- 4.1 Dimension Shifting.- 4.2 When Flats are Projective.- 4.3 Dimension Zero.- 4.4 An Example.- 5 Change of Rings.- 5.1 Computational Considerations.- 5.2 Matrix Rings.- 5.3 Polynomials.- 5.4 Quotients and Localization.- 6 Derived Functors.- 6.1 Additive Functors.- 6.2 Derived Functors.- 6.3 Long Exact Sequences-I. Existence.- 6.4 Long Exact Sequences-II. Naturality.- 6.5 Long Exact Sequences-III. Weirdness.- 6.6 Universality of Ext.- 7 Abstract Homologieal Algebra.- 7.1 Living Without Elements.- 7.2 Additive Categories.- 7.3 Kernels and Cokernels.- 7.4 Cheating with Projectives.- 7.5 (Interlude) Arrow Categories.- 7.6 Homology in Abelian Categories.- 7.7 Long Exact Sequences.- 7.8 An Alternative for Unbalanced Categories.- 8 Colimits and Tor.- 8.1 Limits and Colimits.- 8.2 Adjoint Functors.- 8.3 Directed Colimits, ?, and Tor.- 8.4 Lazard's Theorem.- 8.5 Weak Dimension Revisited.- 9 Odds and Ends.- 9.1 Injective Envelopes.- 9.2 Universal Coefficients.- 9.3 The Kunneth Theorems.- 9.4 Do Connecting Homomorphisms Commute?.- 9.5 The Ext Product.- 9.6 The Jacobson Radical, Nakayama's Lemma, and Quasilocal Rings.- 9.7 Local Rings and Localization Revisited (Expository).- A GCDs, LCMs, PIDs, and UFDs.- B The Ring of Entire Functions.- C The Mitchell-Freyd Theorem and Cheating in Abelian Categories.- D Noether Correspondences in Abelian Categories.- Solution Outlines.- References.- Symbol Index.
Information Provided By: :
