
000 | 00854camuuu200241 a 4500 | |
001 | 000000923816 | |
005 | 19990120155908.0 | |
008 | 961104s1997 mau b 001 0 eng | |
010 | ▼a 96047923 | |
020 | ▼a 0792398513 (alk. paper) | |
040 | ▼a DLC ▼c DLC ▼d DLC ▼d 244002 | |
049 | 0 | ▼l 151047866 ▼l 151046088 |
050 | 0 0 | ▼a QA247.3 ▼b .H33 1997 |
082 | 0 0 | ▼a 512/.3 ▼2 21 |
090 | ▼a 512.3 ▼b H117f | |
100 | 1 | ▼a Hachenberger, Dirk. |
245 | 1 0 | ▼a Finite fields : ▼b normal bases and completely free elements / ▼c by Dirk Hachenberger. |
260 | ▼a Boston : ▼b Kluwer Academic Publishers, ▼c c1997. | |
300 | ▼a xii, 171 p. ; ▼c 25 cm. | |
440 | 4 | ▼a The Kluwer international series in engineering and computer science ; ▼v SECS 390. |
504 | ▼a Includes bibliographical references (p. [161]-164) and index. | |
650 | 0 | ▼a Normal basis theorem. |
650 | 0 | ▼a Finite fields (Algebra). |
Holdings Information
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Sejong Academic Information Center/Science & Technology/ | Call Number 512.3 H117f | Accession No. 151046088 | Availability Available | Due Date | Make a Reservation | Service |
No. 2 | Location Sejong Academic Information Center/Course Reserves/ | Call Number 512.3 H117f | Accession No. 151047866 | Availability In loan | Due Date 2030-12-31 | Make a Reservation | Service |
Contents information
Table of Contents
Preface. I: Introduction and Outline. 1. The Normal Basis Theorem. 2. A Strengthening of the Normal Basis Theorem. 3. Preliminaries on Finite Fields. 4. A Reduction Theorem. 5. Particular Extensions of Prime Power Degree. 6. An Outline. II: Module Structures in Finite Fields. 7. On Modules over Principal Ideal Domains. 8. Cyclic Galois Extensions. 9. Algorithms for Determining Free Elements. 10. Cyclotomic Polynomials. III: Simultaneous Module Structures. 11. Subgroups Respecting Various Module Structures. 12. Decompositions Respecting Various Module Structures. 13. Extensions of Prime Power Degree (1). IV: The Existence of Completely Free Elements. 14. The Two-Field Problem. 15. Admissibility. 16. Extendability. 17. Extensions of Prime Power Degree (2). V: A Decomposition Theory. 18. Suitable Polynomials. 19. Decompositions of Completely Free Elements. 20. Regular Extensions. 21. Enumeration. VI: Explicit Constructions. 22. Strongly Regular Extensions. 23. Exceptional Cases. 24. Constructions in Regular Extensions. 25. Product Constructions. 26. Iterative Constructions. 27. Polynomial Constructions. References. List of Symbols. Index.
Information Provided By: :
