> 상세정보

# 상세정보

## Abstract algebra 2nd ed (5회 대출)

자료유형
단행본
개인저자
Herstein, I. N.
서명 / 저자사항
Abstract algebra / I.N. Herstein.
판사항
2nd ed.
발행사항
New York :   Macmillan Pub. ;   London :   Collier Macmillan,   c1990.
형태사항
xix, 293 p. : ill. ; 24 cm.
ISBN
0023538228
일반주기
Includes index
일반주제명
Algebra, Abstract.
 000 00618camuuu200217 a 4500 001 000000918138 005 19990113113635.0 008 890928s1990 nyua 00110 eng 020 ▼a 0023538228 040 ▼a DLC ▼c DLC ▼d DLC ▼d 244002 049 0 ▼l 151005457 050 0 0 ▼a QA162 ▼b .H47 1990 082 0 0 ▼a 512/.02 ▼2 20 090 ▼a 512.02 ▼b H572a2 100 1 ▼a Herstein, I. N. 245 1 0 ▼a Abstract algebra / ▼c I.N. Herstein. 250 ▼a 2nd ed. 260 ▼a New York : ▼b Macmillan Pub. ; ▼a London : ▼b Collier Macmillan, ▼c c1990. 300 ▼a xix, 293 p. : ▼b ill. ; ▼c 24 cm. 500 ▼a Includes index 650 0 ▼a Algebra, Abstract.

### 소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 청구기호 512.02 H572a2 등록번호 151005457 도서상태 대출가능 반납예정일 예약 서비스

### 컨텐츠정보

#### 목차

```
CONTENTS
CHAPTER 1 Things familiar and Less Familiar = 1
1 A Few Preliminary Remarks = 1
2 Set Theory = 3
3 Mapping = 8
4 A(S)(The Set of 1-1 Mappings of S onto Itself) = 18
5 The Integers = 25
6 Mathematical Induction = 32
7 Complex Numbers = 37
CHAPTER 2 Groups = 47
1 Definitions ions and Examples of Groups = 47
2 Some Simple Remarks = 57
3 Subgroups = 59
4 Lagrange's Theorem = 66
5 Homomorphisms and Normal Subgroups = 79
6 Factor Groups = 92
7 The Homomorphism Theorems = 100
8 Cauchy's Theorem = 105
9 Direct Products = 110
10 Finite Abelian Groups(Optional) = 115
11 Conjugacy and Sylow's Theorem(Optional) = 120
CHAPTER 3 The Symmetric Group = 129
1 Preliminaries = 129
2 Cycle Decomposition = 133
3 Odd and Even Permutations = 140
CHAPTER 4 Ring Theory = 147
1 Definitions and Examples = 147
2 Some Simple Results = 161
3 Ideals, Homomorphisms, and Quotient Rings = 164
4 Maximal Ideals = 174
5 Polynomial Rings = 178
6 Polynomials over the Rationals = 194
7 Field of Quotients of an Integral Domain = 202
CHAPTER 5 Fields = 207
1 Examples of Fields = 208
2 A Brief Excursion into Vector Spaces = 212
3 Field Extensions = 225
4 Finite Extensions = 234
5 Constructibility = 237
6 Roots of Polynomials = 245
CHAPTER 6 Special Topic(Optional) = 255
1 The Simplicity of An = 256
2 Finite Fields Ⅰ = 263
3 Finite Fields Ⅱ : Existence = 266
4 Finite Fields Ⅲ : Uniqueness = 270
5 Cyclotomic Polynomials = 272
6 Liouville's Criterion = 281
7 The Irrationality of π = 285
Index = 289```

### 관련분야 신착자료

엄정국 (2022)

민만식 (2022)

허걸 (2022)

강점란 (2022)

#### 페르마의 마지막 정리 / 4판

Singh, Simon (2022)

임근빈 (2022)