
000 | 00974camuuu200265 a 4500 | |
001 | 000000903276 | |
005 | 19990104144852.0 | |
008 | 840406s1984 ne b 00110 eng | |
010 | ▼a 84008235 | |
020 | ▼a 9027716730 : ▼c DFL87.00 | |
040 | ▼a DLC ▼c DLC ▼d 244002 | |
049 | 0 | ▼l 452074258 |
050 | 0 0 | ▼a QA199 ▼b .H47 1984 |
082 | 0 0 | ▼a 512/.57 ▼2 19 |
090 | ▼a 512.57 ▼b H588c | |
100 | 1 | ▼a Hestenes, David, ▼d 1933- |
245 | 1 0 | ▼a Clifford algebra to geometric calculus : ▼b a unified language for mathematics and physics / ▼c by David Hestenes and Garret Sobczyk. |
260 | ▼a Dordrecht ; ▼a Boston : ▼b D. Reidel ; ▼a Hingham, MA, U.S.A. : ▼b Distributed in the U.S.A. and Canada by Kluwer Academic Publishers, ▼c c1984. | |
300 | ▼a xviii, 314 p. ; ▼c 25 cm. | |
440 | 0 | ▼a Fundamental theories of physics. |
504 | ▼a Includes bibliographical references and index. | |
650 | 0 | ▼a Clifford algebras. |
650 | 0 | ▼a Calculus. |
700 | 1 | ▼a Sobczyk, Garret, ▼d 1943-. |
740 | 0 | ▼a Geometric calculus. |
소장정보
No. | 소장처 | 청구기호 | 등록번호 | 도서상태 | 반납예정일 | 예약 | 서비스 |
---|---|---|---|---|---|---|---|
No. 1 | 소장처 세종학술정보원/과학기술실/ | 청구기호 512.57 H588c | 등록번호 452074258 | 도서상태 대출가능 | 반납예정일 | 예약 | 서비스 |
컨텐츠정보
목차
1 / Geometric Algebra.- 1-1. Axioms, Definitions and Identities.- 1-2. Vector Spaces, Pseudoscalars and Projections.- 1-3. Frames and Matrices.- 1-4. Alternating Forms and Determinants.- 1-5. Geometric Algebras of PseudoEuclidean Spaces.- 2 / Differentiation.- 2-1. Differentiation by Vectors.- 2-2. Multivector Derivative, Differential and Adjoints.- 2-3. Factorization and Simplicial Derivatives.- 3 / Linear and Multilinear Functions.- 3-1. Linear Transformations and Outermorphisms.- 3-2. Characteristic Multivectors and the Cayley-Hamilton Theorem.- 3-3. Eigenblades and Invariant Spaces.- 3-4. Symmetric and Skew-symmetric Transformations.- 3-5. Normal and Orthogonal Transformations.- 3-6. Canonical Forms for General Linear Transformations.- 3-7. Metric Tensors and Isometries.- 3-8. Isometries and Spinors of PseudoEuclidean Spaces.- 3-9. Linear Multivector Functions.- 3-10. Tensors.- 4 / Calculus on Vector Manifolds.- 4-1. Vector Manifolds.- 4-2. Projection, Shape and Curl.- 4-3. Intrinsic Derivatives and Lie Brackets.- 4-4. Curl and Pseudoscalar.- 4-5. Transformations of Vector Manifolds.- 4-6. Computation of Induced Transformations.- 4-7. Complex Numbers and Conformal Transformations.- 5 / Differential Geometry of Vector Manifolds.- 5-1. Curl and Curvature.- 5-2. Hypersurfaces in Euclidean Space.- 5-3. Related Geometries.- 5-4. Parallelism and Projectively Related Geometries.- 5-5. Conformally Related Geometries.- 5-6. Induced Geometries.- 6 / The Method of Mobiles.- 6-1. Frames and Coordinates.- 6-2. Mobiles and Curvature 230.- 6-3. Curves and Comoving Frames.- 6-4. The Calculus of Differential Forms.- 7 / Directed Integration Theory.- 7-1. Directed Integrals.- 7-2. Derivatives from Integrals.- 7-3. The Fundamental Theorem of Calculus.- 7-4. Antiderivatives, Analytic Functions and Complex Variables.- 7-5. Changing Integration Variables.- 7-6. Inverse and Implicit Functions.- 7-7. Winding Numbers.- 7-8. The Gauss-Bonnet Theorem.- 8 / Lie Groups and Lie Algebras.- 8-1. General Theory.- 8-2. Computation.- 8-3. Classification.- References.
정보제공 :
