HOME > 상세정보

상세정보

Clifford algebra to geometric calculus : a unified language for mathematics and physics

Clifford algebra to geometric calculus : a unified language for mathematics and physics (2회 대출)

자료유형
단행본
개인저자
Hestenes, David, 1933- Sobczyk, Garret, 1943-.
서명 / 저자사항
Clifford algebra to geometric calculus : a unified language for mathematics and physics / by David Hestenes and Garret Sobczyk.
발행사항
Dordrecht ;   Boston :   D. Reidel ;   Hingham, MA, U.S.A. :   Distributed in the U.S.A. and Canada by Kluwer Academic Publishers,   c1984.  
형태사항
xviii, 314 p. ; 25 cm.
총서사항
Fundamental theories of physics.
ISBN
9027716730 :
서지주기
Includes bibliographical references and index.
일반주제명
Clifford algebras. Calculus.
000 00974camuuu200265 a 4500
001 000000903276
005 19990104144852.0
008 840406s1984 ne b 00110 eng
010 ▼a 84008235
020 ▼a 9027716730 : ▼c DFL87.00
040 ▼a DLC ▼c DLC ▼d 244002
049 0 ▼l 452074258
050 0 0 ▼a QA199 ▼b .H47 1984
082 0 0 ▼a 512/.57 ▼2 19
090 ▼a 512.57 ▼b H588c
100 1 ▼a Hestenes, David, ▼d 1933-
245 1 0 ▼a Clifford algebra to geometric calculus : ▼b a unified language for mathematics and physics / ▼c by David Hestenes and Garret Sobczyk.
260 ▼a Dordrecht ; ▼a Boston : ▼b D. Reidel ; ▼a Hingham, MA, U.S.A. : ▼b Distributed in the U.S.A. and Canada by Kluwer Academic Publishers, ▼c c1984.
300 ▼a xviii, 314 p. ; ▼c 25 cm.
440 0 ▼a Fundamental theories of physics.
504 ▼a Includes bibliographical references and index.
650 0 ▼a Clifford algebras.
650 0 ▼a Calculus.
700 1 ▼a Sobczyk, Garret, ▼d 1943-.
740 0 ▼a Geometric calculus.

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 세종학술정보원/과학기술실/ 청구기호 512.57 H588c 등록번호 452074258 도서상태 대출가능 반납예정일 예약 서비스 C M

컨텐츠정보

목차

1 / Geometric Algebra.- 1-1. Axioms, Definitions and Identities.- 1-2. Vector Spaces, Pseudoscalars and Projections.- 1-3. Frames and Matrices.- 1-4. Alternating Forms and Determinants.- 1-5. Geometric Algebras of PseudoEuclidean Spaces.- 2 / Differentiation.- 2-1. Differentiation by Vectors.- 2-2. Multivector Derivative, Differential and Adjoints.- 2-3. Factorization and Simplicial Derivatives.- 3 / Linear and Multilinear Functions.- 3-1. Linear Transformations and Outermorphisms.- 3-2. Characteristic Multivectors and the Cayley-Hamilton Theorem.- 3-3. Eigenblades and Invariant Spaces.- 3-4. Symmetric and Skew-symmetric Transformations.- 3-5. Normal and Orthogonal Transformations.- 3-6. Canonical Forms for General Linear Transformations.- 3-7. Metric Tensors and Isometries.- 3-8. Isometries and Spinors of PseudoEuclidean Spaces.- 3-9. Linear Multivector Functions.- 3-10. Tensors.- 4 / Calculus on Vector Manifolds.- 4-1. Vector Manifolds.- 4-2. Projection, Shape and Curl.- 4-3. Intrinsic Derivatives and Lie Brackets.- 4-4. Curl and Pseudoscalar.- 4-5. Transformations of Vector Manifolds.- 4-6. Computation of Induced Transformations.- 4-7. Complex Numbers and Conformal Transformations.- 5 / Differential Geometry of Vector Manifolds.- 5-1. Curl and Curvature.- 5-2. Hypersurfaces in Euclidean Space.- 5-3. Related Geometries.- 5-4. Parallelism and Projectively Related Geometries.- 5-5. Conformally Related Geometries.- 5-6. Induced Geometries.- 6 / The Method of Mobiles.- 6-1. Frames and Coordinates.- 6-2. Mobiles and Curvature 230.- 6-3. Curves and Comoving Frames.- 6-4. The Calculus of Differential Forms.- 7 / Directed Integration Theory.- 7-1. Directed Integrals.- 7-2. Derivatives from Integrals.- 7-3. The Fundamental Theorem of Calculus.- 7-4. Antiderivatives, Analytic Functions and Complex Variables.- 7-5. Changing Integration Variables.- 7-6. Inverse and Implicit Functions.- 7-7. Winding Numbers.- 7-8. The Gauss-Bonnet Theorem.- 8 / Lie Groups and Lie Algebras.- 8-1. General Theory.- 8-2. Computation.- 8-3. Classification.- References.


정보제공 : Aladin

관련분야 신착자료