HOME > Detail View

Detail View

Local representation theory : modular representations as an introduction to the local representation theory of finite groups

Local representation theory : modular representations as an introduction to the local representation theory of finite groups (Loan 2 times)

Material type
단행본
Personal Author
Alperin, J. L.
Title Statement
Local representation theory : modular representations as an introduction to the local representation theory of finite groups / J.L. Alperin.
Publication, Distribution, etc
Cambridge ;   New York :   Cambridge University Press,   c1986.  
Physical Medium
x, 178 p. : Genealogical tables ; 24 cm.
Series Statement
Cambridge studies in advanced mathematics ;11.
ISBN
0521306604
General Note
Includes index.  
Subject Added Entry-Topical Term
Finite groups. Modular representations of groups.
000 00839camuuu200241 a 4500
001 000000902823
005 19981217143224.0
008 850718s1986 enkj 00110 eng
010 ▼a 85017436
020 ▼a 0521306604
040 ▼a DLC ▼c DLC ▼d 244002
049 0 ▼l 452045494
050 0 0 ▼a QA171 ▼b .A545 1986
082 0 0 ▼a 512/.2 ▼2 19
090 ▼a 512.2 ▼b A456L
100 1 ▼a Alperin, J. L.
245 1 0 ▼a Local representation theory : ▼b modular representations as an introduction to the local representation theory of finite groups / ▼c J.L. Alperin.
260 ▼a Cambridge ; ▼a New York : ▼b Cambridge University Press, ▼c c1986.
300 ▼a x, 178 p. : ▼b Genealogical tables ; ▼c 24 cm.
440 0 ▼a Cambridge studies in advanced mathematics ; ▼v 11.
500 ▼a Includes index.
650 0 ▼a Finite groups.
650 0 ▼a Modular representations of groups.

Holdings Information

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Sejong Academic Information Center/Science & Technology/ Call Number 512.2 A456L Accession No. 452045494 Availability Available Due Date Make a Reservation Service C M

Contents information

Table of Contents


CONTENTS
Preface = ⅸ
Ⅰ Semisimple modules
 1 Simple modules = 1
 2 Simple algebras = 7
 3 Group algebras = 12
Ⅱ Projective modules
 4 Indecomposable modules = 21
 5 Free modules = 28
 6 Duality = 38
 7 Tensor products = 45
Ⅲ Modules and subgroups
 8 Induced modules 54
 9 Vertices and sources = 65
 10 Trivia! intersections = 70
 11 Green correspondence = 79
 12 Maps = 84
Ⅳ Blocks
 13 Defect groups = 92
 14 Brauer correspondence = 101
 15 Canonical module = 105
 16 Subpairs = 112
Ⅴ Cyclic blocks
 17 Brauer trees = 118
 18 Nilpotent blocks = 128
 19 Local case = 134
 20 Projective covers = 143
 21 Simple modules = 150
 22 Brauer graph = 159
 23 Trees = 166
 24 Multiplicity = 159
A guide to further reading = 174
Bibliography = 176
Index = 177


New Arrivals Books in Related Fields

Aluffi, Paolo (2021)