HOME > Detail View

Detail View

Set theory The 3rd millennium ed., rev. and expanded

Set theory The 3rd millennium ed., rev. and expanded (Loan 25 times)

Material type
단행본
Personal Author
Jech, Thomas J.
Title Statement
Set theory / Thomas Jech.
판사항
The 3rd millennium ed., rev. and expanded.
Publication, Distribution, etc
Berlin ;   New York :   Springer,   c2003.  
Physical Medium
xiii, 769 p. ; 24 cm.
Series Statement
Springer monographs in mathematics, 1439-7382
ISBN
3540440852 (acid-free paper)
Bibliography, Etc. Note
Includes bibliographical references (p. [707]-732) and indexes.
Subject Added Entry-Topical Term
Set theory.
000 00886pamuu2200265 a 4500
001 000000885345
005 20040622160555
008 020812s2003 gw b 001 0 eng
010 ▼a 2002030443
020 ▼a 3540440852 (acid-free paper)
035 ▼a KRIC08870830
040 ▼a 245011 ▼c 245011 ▼d 245011 ▼d 245011 ▼d 211009
049 1 ▼l 121095319 ▼f 과학
050 0 0 ▼a QA248 ▼b .J42 2003
082 0 0 ▼a 511.3/22 ▼2 21
090 ▼a 512.322 ▼b J44s3
100 1 ▼a Jech, Thomas J.
245 1 0 ▼a Set theory / ▼c Thomas Jech.
250 ▼a The 3rd millennium ed., rev. and expanded.
260 ▼a Berlin ; ▼a New York : ▼b Springer, ▼c c2003.
300 ▼a xiii, 769 p. ; ▼c 24 cm.
440 0 ▼a Springer monographs in mathematics, ▼x 1439-7382
504 ▼a Includes bibliographical references (p. [707]-732) and indexes.
650 0 ▼a Set theory.

Holdings Information

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Science & Engineering Library/Sci-Info(Stacks2)/ Call Number 512.322 J44s Accession No. 121095319 Availability Available Due Date Make a Reservation Service B M

Contents information

Table of Contents

Basic Set Theory.- Axioms of Set Theory.- Ordinal Numbers.- Cardinal Numbers.- Real Numbers.- The Axiom of Choice and Cardinal Arithmetic.- The Axiom of Regularity.- Filters, Ultrafilters and Boolean Algebras.- Stationary Sets.- Combinatorial Set Theory.- Measurable Cardinals.- Borel and Analytic Sets.- Models of Set Theory.- Advanced Set Theory.- Constructible Sets.- Forcing.- Applications of Forcing.- Iterated Forcing and Martin's Axiom.- Large Cardinals.- Large Cardinals and L.- Iterated Ultrapowers and L[U].- Very Large Cardinals.- Large Cardinals and Forcing.- Saturated Ideals.- The Nonstationary Ideal.- The Singular Cardinal Problem.- Descriptive Set Theory.- The Real Line.- Selected Topics.- Combinatorial Principles in L.- More Applications of Forcing.- More Combinatorial Set Theory.- Complete Boolean Algebras.- Proper Forcing.- More Descriptive Set Theory.- Determinacy.- Supercompact Cardinals and the Real Line.- Inner Models for Large Cardinals.- Forcing and Large Cardinals.- Martin's Maximum.- More on Stationary Sets.


Information Provided By: : Aladin

New Arrivals Books in Related Fields

Aluffi, Paolo (2021)