HOME > 상세정보

상세정보

Guide to elliptic curve cryptography

Guide to elliptic curve cryptography (9회 대출)

자료유형
단행본
개인저자
Hankerson, Darrel R. Vanstone, Scott A. Menezes, A. J. (Alfred J.) , 1965-
서명 / 저자사항
Guide to elliptic curve cryptography / Darrel Hankerson, Scott Vanstone, Alfred J. Menezes.
발행사항
New York :   Springer,   2003.  
형태사항
xx, 311 p. ; 25 cm.
ISBN
038795273X (alk. paper)
서지주기
Includes bibliographical references (p. [277]-304) and index.
일반주제명
Computer security. Public key cryptography.
000 00909camuu22002774a 4500
001 000000882927
005 20040604093738
008 030801s2003 nyu b 001 0 eng
010 ▼a 2003059137
020 ▼a 038795273X (alk. paper)
040 ▼a DLC ▼c DLC ▼d 211009
042 ▼a pcc
049 1 ▼l 121095029 ▼f 과학
050 0 0 ▼a QA76.9.A25 ▼b H37 2003
082 0 0 ▼a 005.8/2 ▼2 22
090 ▼a 005.82 ▼b H241g
100 1 ▼a Hankerson, Darrel R.
245 1 0 ▼a Guide to elliptic curve cryptography / ▼c Darrel Hankerson, Scott Vanstone, Alfred J. Menezes.
260 ▼a New York : ▼b Springer, ▼c 2003.
300 ▼a xx, 311 p. ; ▼c 25 cm.
504 ▼a Includes bibliographical references (p. [277]-304) and index.
650 0 ▼a Computer security.
650 0 ▼a Public key cryptography.
700 1 ▼a Vanstone, Scott A.
700 1 ▼a Menezes, A. J. ▼q (Alfred J.) , ▼d 1965-

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/Sci-Info/지정도서 청구기호 005.82 H241g 등록번호 121095029 도서상태 지정도서 반납예정일 예약 서비스 M
No. 2 소장처 세종학술정보원/과학기술실/ 청구기호 005.82 H241g 등록번호 151158206 도서상태 대출가능 반납예정일 예약 서비스 C
No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/Sci-Info/지정도서 청구기호 005.82 H241g 등록번호 121095029 도서상태 지정도서 반납예정일 예약 서비스 M
No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 세종학술정보원/과학기술실/ 청구기호 005.82 H241g 등록번호 151158206 도서상태 대출가능 반납예정일 예약 서비스 C

컨텐츠정보

목차

Contents List of Algorithms List of Tables List of Figures Acronyms Preface 1 Introduction and Overview 1.1 Cryptography basics 1.2 Public-key cryptography 1.2.1 RSAsystems 1.2.2 Discrete logarithmsystems 1.2.3 Elliptic curve systems 1.3 Why elliptic curve cryptography? 1.4 Roadmap 1.5 Notes and further references 2 Finite Field Arithmetic 2.1 Introduction to finite fields 2.2 Primefieldarithmetic 2.2.1 Addition and subtraction 2.2.2 Integer multiplication 2.2.3 Integer squaring 2.2.4 Reduction 2.2.5 Inversion 2.2.6 NISTprimes 2.3 Binary field arithmetic 2.3.1 Addition 2.3.2 Multiplication 2.3.3 Polynomial multiplication 2.3.4 Polynomial squaring 2.3.5 Reduction 2.3.6 Inversion and division 2.4 Optimal extension field arithmetic 2.4.1 Addition and subtraction 2.4.2 Multiplication and reduction 2.4.3 Inversion 2.5 Notes andfurther references 3 Elliptic Curve Arithmetic 3.1 Introduction to elliptic curves 3.1.1 Simplified Weierstrass equations 3.1.2 Group law 3.1.3 Group order 3.1.4 Group structure 3.1.5 Isomorphism classes 3.2 Point representation and the group law 3.2.1 Projective coordinates 3.2.2 The elliptic curve y2 = x3 +ax +b 3.2.3 The elliptic curve y2 +xy = x3 +ax2 +b 3.3 Point multiplication 3.3.1 Unknown point 3.3.2 Fixed point 3.3.3 Multiple point multiplication 3.4 Koblitz curves 3.4.1 The Frobenius map and the ring Z[o] 3.4.2 Point multiplication 3.5 Curves with efficiently computable endomorphisms 3.6 Point multiplication using halving 3.6.1 Point halving 3.6.2 Performing point halving efficiently 3.6.3 Point multiplication 3.7 Point multiplication costs 3.8 Notes andfurther references 4 Cryptographic Protocols 4.1 The elliptic curve discrete logarithm problem 4.1.1 Pohlig-Hellmanattack 4.1.2 Pollard's rho attack 4.1.3 Index-calculus attacks 4.1.4 Isomorphism attacks 4.1.5 Related problems 4.2 Domain parameters 4.2.1 Domain parameter generation and validation 4.2.2 Generating elliptic curves verifiably at random 4.2.3 Determining the number of points on an elliptic curve 4.3 Keypairs 4.4 Signature schemes 4.4.1 ECDSA 4.4.2 EC-KCDSA 4.5 Public-key encryption 4.5.1 ECIES 4.5.2 PSEC 4.6 Keyestablishment 4.6.1 Station-to-station 4.6.2 ECMQV 4.7 Notes and further references 5 Implementation Issues 5.1 Software implementation 5.1.1 Integer arithmetic 5.1.2 Floating-point arithmetic 5.1.3 SIMD and field arithmetic 5.1.4 Platform miscellany 5.1.5 Timings 5.2 Hardware implementation 5.2.1 Design criteria 5.2.2 Field arithmetic processors 5.3 Secure implementation 5.3.1 Power analysis attacks 5.3.2 Electromagnetic analysis attacks 5.3.3 Error message analysis 5.3.4 Fault analysis attacks 5.3.5 Timing attacks 5.4 Notes and further references A Sample Parameters A.1 Irreducible polynomials A.2 Elliptic curves A.2.1 Random elliptic curves over Fp A.2.2 Random elliptic curves over F2m A.2.3 Koblitz elliptic curves over F2m B ECC Standards C Software Tools C.1 General-purpose tools C.2 Libraries Bibliography Index


정보제공 : Aladin

관련분야 신착자료