HOME > Detail View

Detail View

Algebraic K-groups as Galois modules

Algebraic K-groups as Galois modules

Material type
단행본
Personal Author
Snaith, V. P. (Victor Percy), 1944-
Title Statement
Algebraic K-groups as Galois modules / Victor P. Snaith.
Publication, Distribution, etc
Basel ;   Boston :   Birkha<user,   c2002.  
Physical Medium
x, 309 p. : ill. ; 24 cm.
Series Statement
Progress in mathematics ; v. 206
ISBN
3764367172
Bibliography, Etc. Note
Includes bibliographical references (p. [297]-306) and index.
Subject Added Entry-Topical Term
K-groups. K-theory. Galois modules (Algebra) Invariants. L-functions.
000 00974camuu2200289 a 4500
001 000000818053
005 20030612154117
008 020522s2002 gw a b 001 0 eng d
020 ▼a 3764367172
040 ▼a CUS ▼c CUS ▼d OHX ▼d CUS ▼d OCLCQ ▼d 211009
049 ▼a KUBA ▼l 121079650 ▼f 과학
072 7 ▼a QA ▼2 lcco
082 0 4 ▼a 512.55 ▼2 21
090 ▼a 512.55 ▼b S669a
100 1 ▼a Snaith, V. P. ▼q (Victor Percy), ▼d 1944-
245 1 0 ▼a Algebraic K-groups as Galois modules / ▼c Victor P. Snaith.
260 ▼a Basel ; ▼a Boston : ▼b Birkha<user, ▼c c2002.
300 ▼a x, 309 p. : ▼b ill. ; ▼c 24 cm.
490 1 ▼a Progress in mathematics ; ▼v v. 206
504 ▼a Includes bibliographical references (p. [297]-306) and index.
650 0 ▼a K-groups.
650 0 ▼a K-theory.
650 0 ▼a Galois modules (Algebra)
650 0 ▼a Invariants.
650 0 ▼a L-functions.
830 0 ▼a Progress in mathematics (Boston, Mass.) ; ▼v v. 206.

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Science & Engineering Library/Sci-Info(Stacks2)/ Call Number 512.55 S669a Accession No. 121079650 Availability Available Due Date Make a Reservation Service B M
No. 2 Location Sejong Academic Information Center/Science & Technology/ Call Number 512.9 S669a Accession No. 151145351 Availability Available Due Date Make a Reservation Service B M
No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Science & Engineering Library/Sci-Info(Stacks2)/ Call Number 512.55 S669a Accession No. 121079650 Availability Available Due Date Make a Reservation Service B M
No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Sejong Academic Information Center/Science & Technology/ Call Number 512.9 S669a Accession No. 151145351 Availability Available Due Date Make a Reservation Service B M

Contents information

Table of Contents

1 Galois Actions and L-values.- 1.1 Analytic prerequisites.- 1.2 The Lichtenbaum conjecture.- 1.3 Examples of Galois structure invariants.- 2 K-groups and Class-groups.- 2.1 Low-dimensional algebraic K-theory.- 2.2 Perfect complexes.- 2.3 Nearly perfect complexes.- 2.4 Higher-dimensional algebraic K-theory.- 2.5 Describing the class-group by representations.- 3 Higher K-theory of Local Fields.- 3.1 Local fundamental classes and K-groups.- 3.2 The higher K-theory invariants ?s(L/K,2).- 3.3 Two-dimensional thoughts.- 4 Positive Characteristic.- 4.1 ?1(L/K,2) in the tame case.- 4.2 $$ Ext_{Z[G(L/K)]}^2(F_{{v^d}}^ ,F_{{v^{2d}}}^ ) $$.- 4.3 Connections with motivic complexes.- 5 Higher K-theory of Algebraic Integers.- 5.1 Positive etale cohomology.- 5.2 The invariant ?n(N/K,3).- 5.3 A closer look at ?1(L/K,3).- 5.4 Comparing the two definitions.- 5.5 Some calculations.- 5.6 Lifted Galois invariants.- 6 The Wiles unit.- 6.1 The Iwasawa polynomial.- 6.2 p-adic L-functions.- 6.3 Determinants and the Wiles unit.- 6.4 Modular forms with coefficients in ?[G].- 7 Annihilators.- 7.1K0(Z[G], Q) and annihilator relations.- 7.2 Conjectures of Brumer, Coates and Sinnott.- 7.3 The radical of the Stickelberger ideal.


Information Provided By: : Aladin

New Arrivals Books in Related Fields

Aluffi, Paolo (2021)