
000 | 00974camuu2200289 a 4500 | |
001 | 000000818053 | |
005 | 20030612154117 | |
008 | 020522s2002 gw a b 001 0 eng d | |
020 | ▼a 3764367172 | |
040 | ▼a CUS ▼c CUS ▼d OHX ▼d CUS ▼d OCLCQ ▼d 211009 | |
049 | ▼a KUBA ▼l 121079650 ▼f 과학 | |
072 | 7 | ▼a QA ▼2 lcco |
082 | 0 4 | ▼a 512.55 ▼2 21 |
090 | ▼a 512.55 ▼b S669a | |
100 | 1 | ▼a Snaith, V. P. ▼q (Victor Percy), ▼d 1944- |
245 | 1 0 | ▼a Algebraic K-groups as Galois modules / ▼c Victor P. Snaith. |
260 | ▼a Basel ; ▼a Boston : ▼b Birkha<user, ▼c c2002. | |
300 | ▼a x, 309 p. : ▼b ill. ; ▼c 24 cm. | |
490 | 1 | ▼a Progress in mathematics ; ▼v v. 206 |
504 | ▼a Includes bibliographical references (p. [297]-306) and index. | |
650 | 0 | ▼a K-groups. |
650 | 0 | ▼a K-theory. |
650 | 0 | ▼a Galois modules (Algebra) |
650 | 0 | ▼a Invariants. |
650 | 0 | ▼a L-functions. |
830 | 0 | ▼a Progress in mathematics (Boston, Mass.) ; ▼v v. 206. |
Holdings Information
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Science & Engineering Library/Sci-Info(Stacks2)/ | Call Number 512.55 S669a | Accession No. 121079650 | Availability Available | Due Date | Make a Reservation | Service |
No. 2 | Location Sejong Academic Information Center/Science & Technology/ | Call Number 512.9 S669a | Accession No. 151145351 | Availability Available | Due Date | Make a Reservation | Service |
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Science & Engineering Library/Sci-Info(Stacks2)/ | Call Number 512.55 S669a | Accession No. 121079650 | Availability Available | Due Date | Make a Reservation | Service |
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Sejong Academic Information Center/Science & Technology/ | Call Number 512.9 S669a | Accession No. 151145351 | Availability Available | Due Date | Make a Reservation | Service |
Contents information
Table of Contents
1 Galois Actions and L-values.- 1.1 Analytic prerequisites.- 1.2 The Lichtenbaum conjecture.- 1.3 Examples of Galois structure invariants.- 2 K-groups and Class-groups.- 2.1 Low-dimensional algebraic K-theory.- 2.2 Perfect complexes.- 2.3 Nearly perfect complexes.- 2.4 Higher-dimensional algebraic K-theory.- 2.5 Describing the class-group by representations.- 3 Higher K-theory of Local Fields.- 3.1 Local fundamental classes and K-groups.- 3.2 The higher K-theory invariants ?s(L/K,2).- 3.3 Two-dimensional thoughts.- 4 Positive Characteristic.- 4.1 ?1(L/K,2) in the tame case.- 4.2 $$ Ext_{Z[G(L/K)]}^2(F_{{v^d}}^ ,F_{{v^{2d}}}^ ) $$.- 4.3 Connections with motivic complexes.- 5 Higher K-theory of Algebraic Integers.- 5.1 Positive etale cohomology.- 5.2 The invariant ?n(N/K,3).- 5.3 A closer look at ?1(L/K,3).- 5.4 Comparing the two definitions.- 5.5 Some calculations.- 5.6 Lifted Galois invariants.- 6 The Wiles unit.- 6.1 The Iwasawa polynomial.- 6.2 p-adic L-functions.- 6.3 Determinants and the Wiles unit.- 6.4 Modular forms with coefficients in ?[G].- 7 Annihilators.- 7.1K0(Z[G], Q) and annihilator relations.- 7.2 Conjectures of Brumer, Coates and Sinnott.- 7.3 The radical of the Stickelberger ideal.
Information Provided By: :
