
000 | 00839camuu22002534a 4500 | |
001 | 000000797906 | |
005 | 20030723135137 | |
008 | 010725s2002 enka b 001 0 eng | |
010 | ▼a 1049261 | |
020 | ▼a 1852334703 (alk. paper) | |
040 | ▼a DLC ▼c DLC ▼d UKM ▼d C#P ▼d OHX ▼d 211009 | |
042 | ▼a pcc | |
049 | 1 | ▼l 111228813 ▼l 121081587 ▼f 과학 |
050 | 0 0 | ▼a QA174.2 ▼b .B35 2002 |
082 | 0 0 | ▼a 512/.2 ▼2 21 |
090 | ▼a 512.2 ▼b B167m | |
100 | 1 | ▼a Baker, Andrew, ▼d 1953- |
245 | 1 0 | ▼a Matrix groups : ▼b an introduction to Lie group theory / ▼c Andrew Baker. |
260 | ▼a London ; ▼a New York : ▼b Springer, ▼c 2002. | |
300 | ▼a xi, 330 p. : ▼b ill. ; ▼c 24 cm. | |
440 | 0 | ▼a Springer undergraduate mathematics series |
504 | ▼a Includes bibliographical references and index. | |
650 | 0 | ▼a Matrix groups. |
Holdings Information
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Main Library/Western Books/ | Call Number 512.2 B167m | Accession No. 111228813 | Availability Available | Due Date | Make a Reservation | Service |
No. 2 | Location Science & Engineering Library/Sci-Info(Stacks2)/ | Call Number 512.2 B167m | Accession No. 121081587 | Availability Available | Due Date | Make a Reservation | Service |
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Main Library/Western Books/ | Call Number 512.2 B167m | Accession No. 111228813 | Availability Available | Due Date | Make a Reservation | Service |
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Science & Engineering Library/Sci-Info(Stacks2)/ | Call Number 512.2 B167m | Accession No. 121081587 | Availability Available | Due Date | Make a Reservation | Service |
Contents information
Table of Contents
I. Basic Ideas and Examples.- 1. Real and Complex Matrix Groups.- 2. Exponentials, Differential Equations and One-parameter Subgroups.- 3. Tangent Spaces and Lie Algebras.- 4. Algebras, Quaternions and Quaternionic Symplectic Groups.- 5. Clifford Algebras and Spinor Groups.- 6. Lorentz Groups.- II. Matrix Groups as Lie Groups.- 7. Lie Groups.- 8. Homogeneous Spaces.- 9. Connectivity of Matrix Groups.- III. Compact Connected Lie Groups and their Classification.- 10. Maximal Tori in Compact Connected Lie Groups.- 11. Semi-simple Factorisation.- 12. Roots Systems, Weyl Groups and Dynkin Diagrams.- Hints and Solutions to Selected Exercises.
Information Provided By: :
