
Multiple classifier systems : first international workshop, MCS 2000, Cagliari, Italy, June 21-23, 2000 : proceedings
000 | 01894camuu22004454a 4500 | |
001 | 000000797034 | |
005 | 20021210155051 | |
007 | cruun | |
008 | 000606s2000 gw a b 101 0 eng | |
010 | ▼a 00044679 | |
015 | ▼a GBA0-47339 | |
019 | ▼a 44604801 | |
020 | ▼a 3540677046 (softcover : alk. paper) | |
040 | ▼a DLC ▼c DLC ▼d OHX ▼d C#P ▼d UKM ▼d C$Q ▼d LVB ▼d 211009 | |
042 | ▼a pcc | |
049 | 1 | ▼l 121067837 ▼f 과학 |
050 | 0 0 | ▼a Q325.5 ▼b .M84 2000 |
072 | 7 | ▼a QA ▼2 lcco |
082 | 0 0 | ▼a 006.3/1 ▼2 21 |
090 | ▼a 006.31 ▼b M961 | |
245 | 0 0 | ▼a Multiple classifier systems : ▼b first international workshop, MCS 2000, Cagliari, Italy, June 21-23, 2000 : proceedings / ▼c Josef Kittler, Fabio Roli (eds.). |
246 | 3 0 | ▼a MCS 2000 |
260 | ▼a Berlin ; ▼a New York : ▼b Springer, ▼c c2000. | |
300 | ▼a xii, 404 p. : ▼b ill. ; ▼c 24 cm. | |
440 | 0 | ▼a Lecture notes in computer science, ▼x 0302-9743 ; ▼v 1857 |
500 | ▼a Proceedings of the First International Workshop on Multiple Classifier Systems, June 21-23, 2000. | |
504 | ▼a Includes bibliographical references and index. | |
530 | ▼a Also available via the World Wide Web. | |
650 | 0 | ▼a Machine learning ▼v Congresses. |
650 | 0 | ▼a Neural networks (Computer science) ▼v Congresses. |
650 | 0 | ▼a Pattern perception ▼v Congresses. |
650 | 6 | ▼a Apprentissage automatique ▼x Congres. |
650 | 6 | ▼a Reseaux neuronaux (Informatique) ▼x Congres. |
650 | 6 | ▼a Perception des structures ▼x Congres. |
700 | 1 | ▼a Kittler, Josef, ▼d 1946-. |
700 | 1 | ▼a Roli, Fabio, ▼d 1962-. |
711 | 2 | ▼a International Workshop on Multiple Classifier Systems ▼n (1st : ▼d 2000 : ▼c Cagliari, Italy) |
856 | 4 1 | ▼u http://link.springer-ny.com/link/service/series/0558/tocs/t1857.htm ▼z Restricted to Springer LINK subscribers |
938 | ▼a Otto Harrassowitz ▼b HARR ▼n har005128429 ▼c 98.00 DEM |
소장정보
No. | 소장처 | 청구기호 | 등록번호 | 도서상태 | 반납예정일 | 예약 | 서비스 |
---|---|---|---|---|---|---|---|
No. 1 | 소장처 과학도서관/Sci-Info(2층서고)/ | 청구기호 006.31 M961 | 등록번호 121067837 | 도서상태 대출가능 | 반납예정일 | 예약 | 서비스 |
컨텐츠정보
목차
Ensemble Methods in Machine Learning.- Experiments with Classifier Combining Rules.- The "Test and Select" Approach to Ensemble Combination.- A Survey of Sequential Combination of Word Recognizers in Handwritten Phrase Recognition at CEDAR.- Multiple Classifier Combination Methodologies for Different Output Levels.- A Mathematically Rigorous Foundation for Supervised Learning.- Classifier Combinations: Implementations and Theoretical Issues.- Some Results on Weakly Accurate Base Learners for Boosting Regression and Classification.- Complexity of Classification Problems and Comparative Advantages of Combined Classifiers.- Effectiveness of Error Correcting Output Codes in Multiclass Learning Problems.- Combining Fisher Linear Discriminants for Dissimilarity Representations.- A Learning Method of Feature Selection for Rough Classification.- Analysis of a Fusion Method for Combining Marginal Classifiers.- A hybrid projection based and radial basis function architecture.- Combining Multiple Classifiers in Probabilistic Neural Networks.- Supervised Classifier Combination through Generalized Additive Multi-model.- Dynamic Classifier Selection.- Boosting in Linear Discriminant Analysis.- Different Ways of Weakening Decision Trees and Their Impact on Classification Accuracy of DT Combination.- Applying Boosting to Similarity Literals for Time Series Classification.- Boosting of Tree-Based Classifiers for Predictive Risk Modeling in GIS.- A New Evaluation Method for Expert Combination in Multi-expert System Designing.- Diversity between Neural Networks and Decision Trees for Building Multiple Classifier Systems.- Self-Organizing Decomposition of Functions.- Classifier Instability and Partitioning.- A Hierarchical Multiclassifier System for Hyperspectral Data Analysis.- Consensus Based Classification of Multisource Remote Sensing Data.- Combining Parametric and Nonparametric Classifiers for an Unsupervised Updating of Land-Cover Maps.- A Multiple Self-Organizing Map Scheme for Remote Sensing Classification.- Use of Lexicon Density in Evaluating Word Recognizers.- A Multi-expert System for Dynamic Signature Verification.- A Cascaded Multiple Expert System for Verification.- Architecture for Classifier Combination Using Entropy Measures.- Combining Fingerprint Classifiers.- Statistical Sensor Calibration for Fusion of Different Classifiers in a Biometric Person Recognition Framework.- A Modular Neuro-Fuzzy Network for Musical Instruments Classification.- Classifier Combination for Grammar-Guided Sentence Recognition.- Shape Matching and Extraction by an Array of Figure-and-Ground Classifiers.
정보제공 :
