HOME > Detail View

Detail View

Matrix analysis and applied linear algebra

Matrix analysis and applied linear algebra (Loan 21 times)

Material type
단행본
Personal Author
Meyer, C. D. (Carl Dean)
Title Statement
Matrix analysis and applied linear algebra / Carl Meyer.
Publication, Distribution, etc
Philadelphia :   Society for Industrial and Applied Mathematics,   c2000.  
Physical Medium
xii, 718 p. : ill. ; 25 cm.+ 1 computer optical disc (4 3/4 in.).
ISBN
0898714540 9780898714548
Content Notes
1. Linear equations -- 2. Rectangular systems and echelon forms -- 3. Matrix algebra -- 4. Vector spaces -- 5. Norms, inner products, and orthogonality -- 6. Determinants -- 7. Eigenvalues and eigenvectors -- 8. Perron-Frobenius theory.
Bibliography, Etc. Note
Includes bibliographical references and index.
Subject Added Entry-Topical Term
Algebras, Linear. Matrices.
000 01183camuu2200277 a 4500
001 000000784405
005 20141021110625
008 000314s2000 paua b 001 0 eng
010 ▼a 00029725
020 ▼a 0898714540
020 ▼a 9780898714548
040 ▼a DLC ▼c DLC ▼d NOR ▼d 211009 ▼d 244002
042 ▼a pcc
050 0 0 ▼a QA188 ▼b .M495 2000
082 0 0 ▼a 512/.5 ▼2 23
084 ▼a 512.5 ▼2 DDCK
090 ▼a 512.5 ▼b M612m
100 1 ▼a Meyer, C. D. ▼q (Carl Dean)
245 1 0 ▼a Matrix analysis and applied linear algebra / ▼c Carl Meyer.
260 ▼a Philadelphia : ▼b Society for Industrial and Applied Mathematics, ▼c c2000.
300 ▼a xii, 718 p. : ▼b ill. ; ▼c 25 cm.+ ▼e 1 computer optical disc (4 3/4 in.).
504 ▼a Includes bibliographical references and index.
505 0 0 ▼g 1. ▼t Linear equations -- ▼g 2. ▼t Rectangular systems and echelon forms -- ▼g 3. ▼t Matrix algebra -- ▼g 4. ▼t Vector spaces -- ▼g 5. ▼t Norms, inner products, and orthogonality -- ▼g 6. ▼t Determinants -- ▼g 7. ▼t Eigenvalues and eigenvectors -- ▼g 8. ▼t Perron-Frobenius theory.
650 0 ▼a Algebras, Linear.
650 0 ▼a Matrices.

No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Main Library/Western Books/ Call Number 512.5 M612m Accession No. 111225366 Availability Available Due Date Make a Reservation Service B M
No. 2 Location Sejong Academic Information Center/Science & Technology/ Call Number 512.5 M612m Accession No. 151322774 Availability Available Due Date Make a Reservation Service B M
No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Main Library/Western Books/ Call Number 512.5 M612m Accession No. 111225366 Availability Available Due Date Make a Reservation Service B M
No. Location Call Number Accession No. Availability Due Date Make a Reservation Service
No. 1 Location Sejong Academic Information Center/Science & Technology/ Call Number 512.5 M612m Accession No. 151322774 Availability Available Due Date Make a Reservation Service B M

Contents information

Table of Contents

  • Preface
  • Chapter 1: Linear Equations. Introduction
  • Gaussian Elimination and Matrices
  • Gauss?Jordan Method
  • Two-Point Boundary Value Problems
  • Making Gaussian Elimination Work
  • Ill-Conditioned Systems
  • Chapter 2: Rectangular Systems and Echelon Forms. Row Echelon Form and Rank
  • The Reduced Row Echelon Form
  • Consistency of Linear Systems
  • Homogeneous Systems
  • Nonhomogeneous Systems
  • Electrical Circuits
  • Chapter 3: Matrix Algebra. From Ancient China to Arthur Cayley
  • Addition, Scalar Multiplication, and Transposition
  • Linearity
  • Why Do It This Way?
  • Matrix Multiplication
  • Properties of Matrix Multiplication
  • Matrix Inversion
  • Inverses of Sums and Sensitivity
  • Elementary Matrices and Equivalence
  • The LU Factorization
  • Chapter 4: Vector Spaces. Spaces and Subspaces
  • Four Fundamental Subspaces
  • Linear Independence
  • Basis and Dimension
  • More About Rank
  • Classical Least Squares
  • Linear Transformations
  • Change of Basis and Similarity
  • Invariant Subspaces
  • Chapter 5: Norms, Inner Products, and Orthogonality. Vector Norms
  • Matrix Norms
  • Inner Product Spaces
  • Orthogonal Vectors
  • Gram?Schmidt Procedure
  • Unitary and Orthogonal Matrices
  • Orthogonal Reduction
  • The Discrete Fourier Transform
  • Complementary Subspaces
  • Range-Nullspace Decomposition
  • Orthogonal Decomposition
  • Singular Value Decomposition
  • Orthogonal Projection
  • Why Least Squares?
  • Angles Between Subspaces
  • Chapter 6: Determinants. Determinants
  • Additional Properties of Determinants
  • Chapter 7: Eigenvalues and Eigenvectors. Elementary Properties of Eigensystems
  • Diagonalization by Similarity Transformations
  • Functions of Diagonalizable Matrices
  • Systems of Differential Equations
  • Normal Matrices
  • Positive Definite Matrices
  • Nilpotent Matrices and Jordan Structure
  • The Jordan Form
  • Functions of Nondiagonalizable Matrices
  • Difference Equations, Limits, and Summability
  • Minimum Polynomials and Krylov Methods
  • Chapter 8: Perron-Frobenius Theory of Nonnegative Matrices. Introduction
  • Positive Matrices
  • Nonnegative Matrices
  • Stochastic Matrices and Markov Chains
  • Index.

Information Provided By: : Aladin

New Arrivals Books in Related Fields