HOME > 상세정보

상세정보

P-adic numbers : an introduction

P-adic numbers : an introduction (6회 대출)

자료유형
단행본
개인저자
Gouv?a, Fernando Q. (Fernando Quadros)
서명 / 저자사항
P-adic numbers : an introduction / Fernando Q. Gouv?a.
발행사항
Berlin ;   New York :   Springer-Verlag,   c1993.  
형태사항
vi, 282 p. : ill. ; 24 cm.
총서사항
Universitext
ISBN
3540568441 (Berlin : acid-free paper) 0387568441 (New York : acid-free paper)
서지주기
Includes bibliographical references (p. [277]-278) and index.
일반주제명
Nombres p-adiques. p-adic numbers.
000 00839camuuu200253 a 4500
001 000000220972
005 19951110145754.0
008 930610s1993 gw a b 001 0 eng
010 ▼a 93025593
020 ▼a 3540568441 (Berlin : acid-free paper)
020 ▼a 0387568441 (New York : acid-free paper)
040 ▼a DLC ▼c DLC ▼d FPU
049 ▼a ACCL ▼l 111055018
050 0 0 ▼a QA241 ▼b .G64 1993
082 0 0 ▼a 512/.74 ▼2 20
090 ▼a 512.74 ▼b G719p
100 1 ▼a Gouv?a, Fernando Q. ▼q (Fernando Quadros)
245 1 0 ▼a P-adic numbers : ▼b an introduction / ▼c Fernando Q. Gouv?a.
260 ▼a Berlin ; ▼a New York : ▼b Springer-Verlag, ▼c c1993.
300 ▼a vi, 282 p. : ▼b ill. ; ▼c 24 cm.
490 0 ▼a Universitext
504 ▼a Includes bibliographical references (p. [277]-278) and index.
650 7 ▼a Nombres p-adiques. ▼2 ram
650 0 ▼a p-adic numbers.

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 중앙도서관/서고7층/ 청구기호 512.74 G719p 등록번호 111055018 도서상태 대출가능 반납예정일 예약 서비스 B M

컨텐츠정보

목차


CONTENTS
Introduction = 1
1 Ap e ´ ritif = 5
  1.1 Hensel's Analogy = 5
  1.2 Solving Congruences Modulo pn = 12
  1.3 Other Examples = 17
2 Foundations = 21
  2.1 Absolute Values on a Field = 21
  2.2 Basic Properties = 27
  2.3 Topology = 29
  2.4 Algebra = 37
3 p-adic Numbers = 41
  3.1 Absolute Values on Q = 41
  3.2 Completions = 47
  3.3 Exploring Qp = 58
  3.4 Hensel's Lemma = 67
  3.5 Local and Global = 75
4 Elementary Analysis in Qp = 85
  4.1 Sequences and Series = 86
  4.2 Power Series = 88
  4.3 Some Elementary Functions = 97
  4.4 Interpolation = 109
5 Vector Spaces and Field Extensions = 117
  5.1 Normed Vector Spaces over Complete Valued Field = 118
  5.2 Finite-dimensional Normed Vector Spaces = 123
  5.3 Finite Field Extensions = 127
  5.4 Properties of Finite Extensions = 142
  5.5 Analysis = 153
  5.6 Example: Adjoining a p-th Root of Unity = 155
  5.7 On to Cp = 161
6 Analysis in Cp = 171
  6.1 Almost Everything Extends = 171
  6.2 Derivatives = 175
  6.3 Deeper Results on Polynomials and Power Series = 177
  6.4 Entire Functions = 195
  6.5 Newton Polygons = 199
  6.6 Problems = 217
A. Hints and Comments on the Problems = 221
B. A Brief Glance at the Literature = 273
  B.1 Texts = 273
  B.2 Software = 274
  B.3 Other books = 275
Bibliography = 277
Index = 279

관련분야 신착자료

Aluffi, Paolo (2021)