
000 | 00926camuuu200289 4500 | |
001 | 000000110531 | |
005 | 19980703100001.0 | |
008 | 720908s1972 enk b 001 0 eng | |
010 | ▼a 77190412 //r852 | |
015 | ▼a B*** | |
020 | ▼a 0521097177 | |
040 | ▼a DLC ▼c DLC ▼d m.c. | |
049 | 1 | ▼l 422242887 ▼f 과학 |
050 | 0 | ▼a QA387 ▼b .E38 1972 |
082 | 0 0 | ▼a 512/.2 |
090 | ▼a 512.2 ▼b E26i | |
100 | 1 | ▼a Edwards, R. E. ▼q (Robert E.), ▼d 1926- ▼w cn |
245 | 1 0 | ▼a Integration and harmonic analysis on compact groups / ▼c [by] R. E. Edwards. |
260 | ▼a Cambridge [Eng.] : ▼b University Press, ▼c 1972. | |
300 | ▼a vi, 184 p. ; ▼c 23 cm. | |
490 | 1 | ▼a London Mathematical Society. Lecture note series ; ▼v 8. |
504 | ▼a Bibliography: p. 179-184. | |
650 | 0 | ▼a Topological groups. |
650 | 0 | ▼a Harmonic analysis. |
650 | 0 | ▼a Integrals, Generalized. ▼w cn. |
830 | 0 | ▼a London Mathematical Society lecture note series ; ▼v 8. |
소장정보
No. | 소장처 | 청구기호 | 등록번호 | 도서상태 | 반납예정일 | 예약 | 서비스 |
---|---|---|---|---|---|---|---|
No. 1 | 소장처 과학도서관/보존서고2(서양서)/ | 청구기호 512.2 E26i | 등록번호 422242887 | 도서상태 대출가능 | 반납예정일 | 예약 | 서비스 |
컨텐츠정보
목차
General Introduction; Acknowledgements; Part I. Integration and the Riesz representation theorem: 1. Preliminaries regarding measures and integrals; 2. Statement and discussion of Riesz's theorem; 3. Method of proof of RRT: preliminaries; 4. First stage of extension of I; 5. Second stage of extension of I; 6. The space of integrable functions; 7. The a- measure associated with I: proof of the RRT; 8. Lebesgue's convergence theorem; 9. Concerning the necessity of the hypotheses in the RRT; 10. Historical remarks; 11. Complex-valued functions; Part II. Harmonic analysis on compact groups; 12. Invariant integration; 13. Group representations; 14. The Fourier transform; 15. The completeness and uniqueness theorems; 16. Schur's lemma and its consequences; 17. The orthogonality relations; 18. Fourier series in L2(G); 19. Positive definite functions; 20. Summability and convergence of Fourier series; 21. Closed spans of translates; 22. Structural building bricks and spectra; 23. Closed ideals and closed invariant subspaces; 24. Spectral synthesis problems; 25. The Hausdorff-Young theorem; 26. Lacunarity.
정보제공 :
