HOME > 상세정보

상세정보

Integration and harmonic analysis on compact groups

Integration and harmonic analysis on compact groups

자료유형
단행본
개인저자
Edwards, R. E. (Robert E.), 1926-
서명 / 저자사항
Integration and harmonic analysis on compact groups / [by] R. E. Edwards.
발행사항
Cambridge [Eng.] :   University Press,   1972.  
형태사항
vi, 184 p. ; 23 cm.
총서사항
London Mathematical Society. Lecture note series ;8.
ISBN
0521097177
서지주기
Bibliography: p. 179-184.
일반주제명
Topological groups. Harmonic analysis. Integrals, Generalized.
000 00926camuuu200289 4500
001 000000110531
005 19980703100001.0
008 720908s1972 enk b 001 0 eng
010 ▼a 77190412 //r852
015 ▼a B***
020 ▼a 0521097177
040 ▼a DLC ▼c DLC ▼d m.c.
049 1 ▼l 422242887 ▼f 과학
050 0 ▼a QA387 ▼b .E38 1972
082 0 0 ▼a 512/.2
090 ▼a 512.2 ▼b E26i
100 1 ▼a Edwards, R. E. ▼q (Robert E.), ▼d 1926- ▼w cn
245 1 0 ▼a Integration and harmonic analysis on compact groups / ▼c [by] R. E. Edwards.
260 ▼a Cambridge [Eng.] : ▼b University Press, ▼c 1972.
300 ▼a vi, 184 p. ; ▼c 23 cm.
490 1 ▼a London Mathematical Society. Lecture note series ; ▼v 8.
504 ▼a Bibliography: p. 179-184.
650 0 ▼a Topological groups.
650 0 ▼a Harmonic analysis.
650 0 ▼a Integrals, Generalized. ▼w cn.
830 0 ▼a London Mathematical Society lecture note series ; ▼v 8.

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/보존서고2(서양서)/ 청구기호 512.2 E26i 등록번호 422242887 도서상태 대출가능 반납예정일 예약 서비스 B M

컨텐츠정보

목차

General Introduction; Acknowledgements; Part I. Integration and the Riesz representation theorem: 1. Preliminaries regarding measures and integrals; 2. Statement and discussion of Riesz's theorem; 3. Method of proof of RRT: preliminaries; 4. First stage of extension of I; 5. Second stage of extension of I; 6. The space of integrable functions; 7. The a- measure associated with I: proof of the RRT; 8. Lebesgue's convergence theorem; 9. Concerning the necessity of the hypotheses in the RRT; 10. Historical remarks; 11. Complex-valued functions; Part II. Harmonic analysis on compact groups; 12. Invariant integration; 13. Group representations; 14. The Fourier transform; 15. The completeness and uniqueness theorems; 16. Schur's lemma and its consequences; 17. The orthogonality relations; 18. Fourier series in L2(G); 19. Positive definite functions; 20. Summability and convergence of Fourier series; 21. Closed spans of translates; 22. Structural building bricks and spectra; 23. Closed ideals and closed invariant subspaces; 24. Spectral synthesis problems; 25. The Hausdorff-Young theorem; 26. Lacunarity.


정보제공 : Aladin

관련분야 신착자료