HOME > 상세정보

상세정보

Class field theory

Class field theory (5회 대출)

자료유형
단행본
개인저자
Artin, Emil, 1898-1962. Tate, John Torrence , 1925-.
서명 / 저자사항
Class field theory / Emil Artin, John Tate.
발행사항
Redwood City, Calif. :   Addison-Wesley,   c1990.  
형태사항
xxxviii, 259 p. ; 24 cm.
총서사항
Advanced book classics.
ISBN
0201510111
일반주기
Reprint. Originally published: New York : W.A. Benjamin, 1967 [i.e. 1968]  
"Advanced Book Program."  
Based on the seminar given by the authors at Princeton University in 1951-52.  
일반주제명
Class field theory.
000 00989camuu2200277 a 4500
001 000000090288
005 20031027113942
008 890217s1990 cau 000 0 eng
010 ▼a 89000389
020 ▼a 0201510111
040 ▼a DLC ▼c DLC ▼d DLC ▼d 211009
049 1 ▼l 421111486 ▼f 과학 ▼l 121074370 ▼f 과학
050 0 0 ▼a QA247 ▼b .A75 1990
082 0 0 ▼a 512/.74 ▼2 19
090 ▼a 512.74 ▼b A791c
100 1 0 ▼a Artin, Emil, ▼d 1898-1962.
245 1 0 ▼a Class field theory / ▼c Emil Artin, John Tate.
260 0 ▼a Redwood City, Calif. : ▼b Addison-Wesley, ▼c c1990.
300 ▼a xxxviii, 259 p. ; ▼c 24 cm.
440 0 ▼a Advanced book classics.
500 ▼a Reprint. Originally published: New York : W.A. Benjamin, 1967 [i.e. 1968]
500 ▼a "Advanced Book Program."
500 ▼a Based on the seminar given by the authors at Princeton University in 1951-52.
650 0 ▼a Class field theory.
700 1 0 ▼a Tate, John Torrence , ▼d 1925-.

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/Sci-Info(2층서고)/ 청구기호 512.74 A791c 등록번호 121074370 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 2 소장처 과학도서관/Sci-Info(2층서고)/ 청구기호 512.74 A791c 등록번호 421111486 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 3 소장처 세종학술정보원/과학기술실/ 청구기호 512.74 A788c 등록번호 151081062 도서상태 대출가능 반납예정일 예약 서비스 M
No. 4 소장처 세종학술정보원/과학기술실/ 청구기호 512.74 A788c 등록번호 452082111 도서상태 대출가능 반납예정일 예약 서비스 M
No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/Sci-Info(2층서고)/ 청구기호 512.74 A791c 등록번호 121074370 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 2 소장처 과학도서관/Sci-Info(2층서고)/ 청구기호 512.74 A791c 등록번호 421111486 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 세종학술정보원/과학기술실/ 청구기호 512.74 A788c 등록번호 151081062 도서상태 대출가능 반납예정일 예약 서비스 M
No. 2 소장처 세종학술정보원/과학기술실/ 청구기호 512.74 A788c 등록번호 452082111 도서상태 대출가능 반납예정일 예약 서비스 M

컨텐츠정보

목차

CONTENTS
Chapter 5. First fundamental inequality
  1. Statement of the first inequality = 4
  2. First inequality in function fields = 5
  3. First inequality in global fields = 7
  4. Consequences of the first inequality = 12
Chapter 6. Second fundamental inequality
  1. Statement and consequences of the inequality = 16
  2. Kummer theory = 19
  3. Proof in Kummer fields of prime degree = 24
  4. Proof in p-extensions = 29
  5. Infinite divisibility of universal norms = 37
Chapter 7. Reciprocity law
  1. Introduction = 39
  2. Reciprocity law over the rationals = 40
  3. The reciprocity law = 49
  4. Higher dimensional cohomology groups = 67
Chapter 8. Existence Theorem
  1. Existence and ramification theorems = 70
  2. Number fields = 71
  3. Function fields = 76
  4. Decomposition laws and arithmetic progressions = 80
Chapter 9. Connected component of id e ` le 치asses
  1. Structure of the connected component = 82
  2. Cohomology of the connected component = 90
Chapter 10. Grunwald-Wang theorem
  1. Interconnection between global and local theory = 93
  2. Abelianfields with given local behavior = 98
  3. Cyclic extensions = 105
Chapter 11. Higher ramification theory
  1. Higher ramification groups = 108
  2. Ramification groups of a subfield = 113
  3. The general residue class field = 120
  4. General local class field theory = 123
  5. The conductor = 133
    Appendix: Induced characters = 143
Chapter 12. Explicit reciprocity laws
  1. Formalism of the power residue symbol = 149
  2. Local analysis = 151
  3. Computation of the norm residue symbol in certain local Kummer fields = 156
  4. Power reciprocity law = 168
Chapter 13. Group extensions
  1. Homomorphisms of group extensions = 174
  2. Commutators and transfers = 180
  3. The map v: H²(G, A) →H²(G/H, AH ) = 185
  4. Splitting modules and Principal Ideal Theorem = 189
Chapter 14. Abstract class field theory
  1. Formations = 197
  2. Field formations, Brauer group = 202
  3. Class formations, method for establishing the axioms = 209
  4. Main theorem = 215
  5. Reciprocity law isomorphisms = 222
  6. Abstract existence theorem = 231
Chapter 15. Weil groups = 236

관련분야 신착자료