
000 | 01453camuuu200361 a 4500 | |
001 | 000000024203 | |
005 | 19910913064353.0 | |
008 | 871203s1989 enka b 00110 eng | |
010 | ▼a 87035931 //r912 | |
020 | ▼a 0521339847 (pbk.) | |
020 | ▼a 0521327881 | |
035 | ▼a 87035931 //r912 | |
040 | ▼a DLC ▼c DLC ▼d DLC | |
041 | 1 | ▼a engfre |
050 | 0 0 | ▼a QA184 ▼b .C525 1989 |
082 | 0 0 | ▼a 512/.5 ▼2 19 |
090 | ▼a 512.5 ▼b C566iE | |
093 | ▼l 111023805 | |
100 | 1 0 | ▼a Ciarlet, Philippe G. |
240 | 1 0 | ▼a Introduction a l'analyse numerique matricielle et a l'optimisation. ▼l English |
245 | 1 0 | ▼a Introduction to numerical linear algebra and optimisation / ▼c Philippe G. Ciarlet with the assistance of Bernadette Miara and Jean-Marie Thomas for the exercises ; translated by A. Buttigieg. |
260 | 0 | ▼a Cambridge [England] ; ▼a New York : ▼b Cambridge University Press , ▼c 1989. |
300 | ▼a xiv, 436 p. : ▼b ill. ; ▼c 24 cm. | |
440 | 0 0 | ▼a Cambridge texts in applied mathematics ; ▼v [4] |
500 | ▼a Includes index. | |
500 | ▼a Translation of: Introduction a l'analyse numerique matricielle et a l'optimisation and Exercises d'analyse numerique matricielle et d'optimisation. | |
504 | ▼a Bibliography: p. [411]-421. | |
650 | 0 | ▼a Numerical calculations. |
650 | 0 | ▼a Mathematical optimization. |
650 | 0 | ▼a Algebras, Linear. |
700 | 1 0 | ▼a Thomas, Jean-Marie. |
700 | 1 0 | ▼a Miara, Bernadette. |
740 | 0 1 | ▼a Numerical linear algebra and optimisation. |
Holdings Information
No. | Location | Call Number | Accession No. | Availability | Due Date | Make a Reservation | Service |
---|---|---|---|---|---|---|---|
No. 1 | Location Main Library/Western Books/ | Call Number 512.5 C566iE | Accession No. 111023805 | Availability Available | Due Date | Make a Reservation | Service |
Contents information
Table of Contents
Preface; Part I. Numerical Linear Algebra: 1. A summary of results on matrices; 2. General results in the numerical analysis of matrices; 3. Sources of problems in the numerical analysis of matrices; 4. Direct methods for the solution of linear systems; 5. Iterative methods for the solution of linear systems; 6. Methods for the calculation of eigenvalues and eigenvectors; Part II. Optimisation: 7. A review of differential calculus. Some applications; 8. General results on optimisation. Some algorithms; 9. Introduction to non-linear programming; 10. Linear programming; Bibliography and comments; Main notations used; Index.
Information Provided By: :
