
000 | 00779pamuuu200241 a 4500 | |
001 | 000000022479 | |
005 | 19950407110723.0 | |
008 | 931210s1994 ne b 001 0 eng | |
010 | ▼a 93047519 | |
020 | ▼a 079232689X | |
035 | ▼a 93047519 | |
040 | ▼a DLC ▼c DLC ▼d DLC | |
050 | 0 0 | ▼a QA241 ▼b .R34 1994 |
082 | 0 0 | ▼a 512/.7 ▼2 20 |
090 | ▼a 512.7 ▼b R288 | |
245 | 0 0 | ▼a Real numbers, generalizations of the reals, and theories of continua / ▼c edited by Philip Ehrlich. |
260 | 0 | ▼a Dordrecht ; ▼a Boston : ▼b Kluwer Academic Publishers , ▼c 1994. |
300 | ▼a xxxii, 279 p. : ▼b ill. ; ▼c 23 cm. | |
440 | 0 0 | ▼a Synthese library ; ▼v v. 242 |
500 | ▼a Includes bibliographical references and index. | |
650 | 0 | ▼a Continuum hypothesis. |
650 | 0 | ▼a Numbers, Real. |
700 | 1 0 | ▼a Ehrlich, Philip. |
소장정보
No. | 소장처 | 청구기호 | 등록번호 | 도서상태 | 반납예정일 | 예약 | 서비스 |
---|---|---|---|---|---|---|---|
No. 1 | 소장처 중앙도서관/서고7층/ | 청구기호 512.7 R288 | 등록번호 111023841 | 도서상태 대출가능 | 반납예정일 | 예약 | 서비스 |
컨텐츠정보
목차
Part 0: General Introduction; P. Ehrlich. Part I: The Cantor--Dedekind Philosophy and its Early Reception. On the Infinite and Infinitesimal in Mathematical Analysis, Presidential Address to the London Mathematical Society, November 13, 1902, E.W. Hobson. Part II: Alternative Theories of Real Numbers. A Constructive Look at the Real Number Line; D.S. Bridges. The Surreals and Reals; J.H. Conway. Part III: Extensions and Generalizations of the Ordered Field of Reals: the Late 19th-Century Geometrical Motivation. Veronese's Non-Archimedean Linear Continuum; G. Fisher. Review of Hilbert's Foundations of Geometry; Henri Poincare (1902); Translated for the American Mathematical Society by E.V. Huntington (1903). On Non-Archimedean Geometry, Invited Address to the 4th International Congress of Mathematicians, Rome, April 1908, Giuseppe Veronese; Translated by Mathieu Marion (with editorial notes by Philip Ehrlich). Part IV: Extensions and Generalizations of the Reals: Some 20th-Century Developments. Calculation, Order, and Continuity; H. Sinaceur. The Hyperreal Line; H.J. Keisler. All Numbers Great and Small; P. Ehrlich. Rational and Real Ordinal Numbers; D. Klaua.
정보제공 :
