HOME > 상세정보

상세정보

Real numbers, generalizations of the reals, and theories of continua

Real numbers, generalizations of the reals, and theories of continua (2회 대출)

자료유형
단행본
개인저자
Ehrlich, Philip.
서명 / 저자사항
Real numbers, generalizations of the reals, and theories of continua / edited by Philip Ehrlich.
발행사항
Dordrecht ;   Boston :   Kluwer Academic Publishers ,   1994.  
형태사항
xxxii, 279 p. : ill. ; 23 cm.
총서사항
Synthese library ; v. 242
ISBN
079232689X
일반주기
Includes bibliographical references and index.  
일반주제명
Continuum hypothesis. Numbers, Real.
000 00779pamuuu200241 a 4500
001 000000022479
005 19950407110723.0
008 931210s1994 ne b 001 0 eng
010 ▼a 93047519
020 ▼a 079232689X
035 ▼a 93047519
040 ▼a DLC ▼c DLC ▼d DLC
050 0 0 ▼a QA241 ▼b .R34 1994
082 0 0 ▼a 512/.7 ▼2 20
090 ▼a 512.7 ▼b R288
245 0 0 ▼a Real numbers, generalizations of the reals, and theories of continua / ▼c edited by Philip Ehrlich.
260 0 ▼a Dordrecht ; ▼a Boston : ▼b Kluwer Academic Publishers , ▼c 1994.
300 ▼a xxxii, 279 p. : ▼b ill. ; ▼c 23 cm.
440 0 0 ▼a Synthese library ; ▼v v. 242
500 ▼a Includes bibliographical references and index.
650 0 ▼a Continuum hypothesis.
650 0 ▼a Numbers, Real.
700 1 0 ▼a Ehrlich, Philip.

소장정보

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 중앙도서관/서고7층/ 청구기호 512.7 R288 등록번호 111023841 도서상태 대출가능 반납예정일 예약 서비스 B M

컨텐츠정보

목차

Part 0: General Introduction; P. Ehrlich. Part I: The Cantor--Dedekind Philosophy and its Early Reception. On the Infinite and Infinitesimal in Mathematical Analysis, Presidential Address to the London Mathematical Society, November 13, 1902, E.W. Hobson. Part II: Alternative Theories of Real Numbers. A Constructive Look at the Real Number Line; D.S. Bridges. The Surreals and Reals; J.H. Conway. Part III: Extensions and Generalizations of the Ordered Field of Reals: the Late 19th-Century Geometrical Motivation. Veronese's Non-Archimedean Linear Continuum; G. Fisher. Review of Hilbert's Foundations of Geometry; Henri Poincare (1902); Translated for the American Mathematical Society by E.V. Huntington (1903). On Non-Archimedean Geometry, Invited Address to the 4th International Congress of Mathematicians, Rome, April 1908, Giuseppe Veronese; Translated by Mathieu Marion (with editorial notes by Philip Ehrlich). Part IV: Extensions and Generalizations of the Reals: Some 20th-Century Developments. Calculation, Order, and Continuity; H. Sinaceur. The Hyperreal Line; H.J. Keisler. All Numbers Great and Small; P. Ehrlich. Rational and Real Ordinal Numbers; D. Klaua.


정보제공 : Aladin

관련분야 신착자료